×

Hopf-pitchfork singularities in coupled systems. (English) Zbl 1220.37042

The authors consider Hopf-pitchfork singularities which are unfolded by a family of two brusselators linearly coupled by diffusion studying chaotic dynamics and synchronization processes in such coupled systems.

MSC:

37G35 Dynamical aspects of attractors and their bifurcations
37G10 Bifurcations of singular points in dynamical systems
Full Text: DOI

References:

[1] Bier, M.; Bakker, B. M.; Westerhoff, H. V., How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment, Biophys. J., 78, 1087-1093 (2000)
[2] Wolf, J.; Heinrich, R., Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation, Biochem. J., 345, 321-334 (2000)
[3] Turing, A., The chemical basis of morphogenesis, Phil. Trans. R. Soc. Ser. B, 237, 37-72 (1952) · Zbl 1403.92034
[4] Smale, S., A mathematical model of two cells via Turing’s equation, Lect. Math. Life Sci., 6, 15-26 (1974) · Zbl 0333.92002
[5] Drubi, F.; Ibáñez, S.; Rodríguez, J. A., Coupling leads to chaos, J. Differential Equations, 239, 371-385 (2007) · Zbl 1133.34027
[6] Drubi, F.; Ibáñez, S.; Rodríguez, J. A., Singularities in coupled systems, Bull. Belg. Math. Soc. Simon Stevin, 15, 797-808 (2008) · Zbl 1153.37018
[7] Alexander, J. C., A period-doubling bubble in the dynamics of two coupled oscillators, Lecture Notes in Biomath., 66, 208-220 (1986) · Zbl 0591.92014
[8] Schreiber, I.; Marek, M., Strange attractors in coupled reaction-diffusion cells, Physica D, 5, 258-272 (1982)
[9] Shil’nikov, L. P., A case of the existence of a denumerable set of periodic motions, Sov. Math. Dokl., 6, 163-166 (1965) · Zbl 0136.08202
[10] Shil’nikov, L. P., A contribution to the problem of the structure of an extended neighborhood of a rough state of saddle-focus type, Math. USSR Sb., 10, 91-102 (1970) · Zbl 0216.11201
[11] Tresser, C., About some theorems by L.P. Shil’nikov, Ann. Inst. Henri Poincaré Phys. Théor., 40, 441-461 (1984) · Zbl 0556.58025
[12] Glendinning, P.; Sparrow, C., Local and global behaviour near homoclinic orbits, J. Stat. Phys., 35, 645-696 (1984) · Zbl 0588.58041
[13] Gonchenko, S. V.; Turaev, D. V.; Gaspard, P.; Nicolis, G., Complexity in the bifurcation structure of homoclinic loops to a saddle-focus, Nonlinearity, 10, 409-423 (1997) · Zbl 0905.34042
[14] Mora, L.; Viana, M., Abundance of strange attractors, Acta Math., 171, 1-71 (1993) · Zbl 0815.58016
[15] Benedicks, M.; Carleson, L., The dynamics of the Hénon map, Ann. of Math., 133, 73-169 (1991) · Zbl 0724.58042
[16] Ovsyannikov, I. M.; Shil’nikov, L. P., On system with saddle-focus homoclinic curve, Math. USSR Sb., 87, 557-574 (1987) · Zbl 0628.58044
[17] Pumariño, A.; Rodríguez, J. A., Coexistence and persistence of strange attractors, Lecture Notes in Math., 1658 (1997) · Zbl 0877.58041
[18] Pumariño, A.; Rodríguez, J. A., Coexistence and persistence of infinitely many strange attractors, Ergodic Theory Dynam. Systems, 21, 1511-1523 (2001) · Zbl 1073.37514
[19] Homburg, A. J., Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria, Nonlinearity, 15, 1029-1050 (2002) · Zbl 1017.37012
[20] Turaev, D. V.; Shil’nikov, L. P., An example of a wild strange attractor, Math. USSR Sb., 189, 137-160 (1998) · Zbl 0927.37017
[21] Ibáñez, S.; Rodríguez, J. A., Shil’nikov configurations in any generic unfolding of the nilpotent singularity of codimension three on \(R^3\), J. Differential Equations, 208, 147-175 (2005) · Zbl 1080.34029
[22] Arneodo, A.; Coullet, P.; Spiegel, E.; Tresser, C., Asymptotic chaos, Physica D, 10, 327-347 (1985) · Zbl 0595.58030
[23] Golubitsky, M.; Stewart, I.; Török, A., Patterns of synchrony in coupled cell networks with multiple arrows, SIAM J. Appl. Dyn. Syst., 4, 78-100 (2005) · Zbl 1090.34030
[24] Stewart, I.; Golubitsky, M.; Pivato, M., Symmetry groupoids and patterns of synchrony in coupled cell networks, SIAM J. Appl. Dyn. Syst., 2, 609-646 (2003) · Zbl 1089.34032
[25] N.K. Gavrilov, On some bifurcations of an equilibrium state with one zero and a pair of purely imaginary roots, in: Methods of Qualitative Theory of Differential Equations, Gorky State University, Gorky, 1978.; N.K. Gavrilov, On some bifurcations of an equilibrium state with one zero and a pair of purely imaginary roots, in: Methods of Qualitative Theory of Differential Equations, Gorky State University, Gorky, 1978.
[26] Guckenheimer, J., On a codimension two bifurcation, (Rand, D.; Young, L., Dynamical Systems and Turbulence. Dynamical Systems and Turbulence, Lect. Notes in Math., vol. 898 (1981)), 409-423 · Zbl 0482.58006
[27] N.K. Gavrilov, On bifurcations of an equilibrium with two pairs of pure imaginary roots, in: Methods of Qualitative Theory of Differential Equations, Gorky State University, Gorky, 1980.; N.K. Gavrilov, On bifurcations of an equilibrium with two pairs of pure imaginary roots, in: Methods of Qualitative Theory of Differential Equations, Gorky State University, Gorky, 1980.
[28] Guckenheimer, J.; Holmes, P. J., (Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42 (1990), Springer: Springer New York)
[29] Algaba, A.; Freire, E.; Gamero, E., Hypernormal form for the Hopf-zero bifurcation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8, 1857-1887 (1988) · Zbl 0996.37062
[30] Algaba, A.; Freire, E.; Gamero, E.; Rodríguez-Luis, A. J., On a codimension-three unfolding of the interaction of degenerate Hopf and pitchfork bifurcations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9, 1333-1362 (1999) · Zbl 0983.37057
[31] Algaba, A.; Freire, E.; Gamero, E.; Rodríguez-Luis, A. J., A three-parameter study of a degenerate case of the Hopf-pitchfork bifurcation, Nonlinearity, 12, 1177-1206 (1999) · Zbl 0943.34027
[32] Algaba, A.; Freire, E.; Gamero, E.; Rodríguez-Luis, A. J., A tame degenerate Hopf-pitchfork bifurcation in a modified van der Pol-Duffing oscillator, Nonlinear Dynam., 22, 249-269 (2000) · Zbl 0976.70016
[33] Algaba, A.; Merino, M.; Freire, E.; Gamero, E.; Rodríguez-Luis, A. J., On the Hopf-pitchfork bifurcation in the Chua’s equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 10, 291-305 (2000) · Zbl 1090.34545
[34] Kuznetsov, Y. A., (Elements of Applied Bifurcation Theory. Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, vol. 112 (2004), Springer: Springer New York) · Zbl 1082.37002
[35] Broer, H. W.; Vegter, G., Subordinate Sil’nikov bifurcations near some singularities of vector fields having low codimension, Ergodic Theory Dynam. Systems, 4, 509-525 (1984) · Zbl 0553.58024
[36] Takens, F., Singularities of vector fields, Publ. Math. Inst. Hauters Études Sci., 43, 47-100 (1974) · Zbl 0279.58009
[37] Wolfram Research, Inc. MATHEMATICA 5: http://www.wolfram.com/; Wolfram Research, Inc. MATHEMATICA 5: http://www.wolfram.com/
[38] E.J. Doedel, R.C. Paffenroth, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X. Wang, AUTO 2000: continuation and bifurcation software for ordinary differential equations (with HomCont), Technical Report, Caltech, 2001.; E.J. Doedel, R.C. Paffenroth, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X. Wang, AUTO 2000: continuation and bifurcation software for ordinary differential equations (with HomCont), Technical Report, Caltech, 2001.
[39] Perko, L., (Differential Equations and Dynamical Systems. Differential Equations and Dynamical Systems, Texts in Applied Mathematics, vol. 7 (1996), Springer: Springer New York) · Zbl 0854.34001
[40] Chicone, C., (Ordinary Differential Equations with Applications. Ordinary Differential Equations with Applications, Texts in Applied Mathematics, vol. 34 (1999), Springer: Springer New York) · Zbl 0937.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.