×

Derivations of \(R[X,Y,Z]\) with a slice. (English) Zbl 1220.13018

The author considers locally nilpotent derivations \(D\) on \(R[X,Y,Z]\) having a slice (which is an element \(s\) such that \(D(s)=1\)). He considers the case where \(R\) is a polynomial ring over a field of characteristic zero. The central question is: is the kernel \(A\) of \(D\) isomorphic to \(R^{[2]}\)?
It is shown that \(A\) is an \(\mathbb A^2\)-fibration over \(R\).
The author gives a family of interesting examples: define \(R:=k[a,b]\cong k^{[2]}\), \(T_n:=a^nY+bZ+X^2\), \(v_n:=bX+a^nT_n\), \(t_n:=Z+bv_nY-2v_nXT_n-bv_n^2T_n^2\) and \(\varphi_n\) a locally nilpotent derivation on \(R[X,Y,Z]\) by \(\varphi_n(X)=-a^n\), \(\varphi_n(Y)=2(X+bv_nT_n)\), \(\varphi_n(Z)=1-2a^nv_nT_n\).

MSC:

13N15 Derivations and commutative rings
14R25 Affine fibrations
14R10 Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem)
Full Text: DOI

References:

[1] Abhyankar, S.; Eakin, P.; Heinzer, W., On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra, 23, 310-342 (1972) · Zbl 0255.13008
[2] Asanuma, T., Polynomial fibre rings of algebras over noetherian rings, Invent. Math., 87, 101-127 (1987) · Zbl 0607.13015
[3] Bass, H.; Connell, E. H.; Wright, D. L., Locally polynomial algebras are symmetric algebras, Invent. Math., 38, 279-299 (1977) · Zbl 0371.13007
[4] Bhatwadekar, S. M.; Dutta, A. K., Kernel of locally nilpotent \(R\)-derivations of \(R [X, Y]\), Trans. Amer. Math. Soc., 349, 3303-3319 (1997) · Zbl 0883.13006
[5] D. Daigle, G. Freudenburg, Families of affine fibrations, Progr. Math., in press; D. Daigle, G. Freudenburg, Families of affine fibrations, Progr. Math., in press · Zbl 1234.14042
[6] Daigle, D.; Freudenburg, G., Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations of \(k [X_1, \ldots, X_n]\), J. Algebra, 204, 353-371 (1998) · Zbl 0956.13007
[7] H. Derksen, A. van den Essen, P. van Rossum, The cancellation problem in dimension four, Tech. Report 0022, Dept. of Mathematics, Univ. Nijmegen, The Netherlands, 2000; H. Derksen, A. van den Essen, P. van Rossum, The cancellation problem in dimension four, Tech. Report 0022, Dept. of Mathematics, Univ. Nijmegen, The Netherlands, 2000
[8] van den Essen, A.; van Rossum, P., A class of counterexamples to the cancellation problem for arbitrary rings, Ann. Polon. Math., 76, 89-93 (2001) · Zbl 1033.14038
[9] Freudenburg, G., Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia Math. Sci., vol. 136 (2006), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 1121.13002
[10] Fujita, T., On Zariski problem, Proc. Japan Acad. Ser. A Math. Sci., 55, 106-110 (1979) · Zbl 0444.14026
[11] Hochster, M., Non-uniqueness of coefficient rings in a polynomial ring, Proc. Amer. Math. Soc., 34, 81-82 (1972) · Zbl 0233.13012
[12] Kaliman, S.; Zaidenberg, M., Vénéreau polynomials and related fiber bundles, J. Pure Appl. Algebra, 192, 275-286 (2004) · Zbl 1062.14074
[13] Kambayashi, T., Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra, 60, 439-451 (1979) · Zbl 0429.14017
[14] S. Kuroda, A generalization of the Shestakov-Umirbaev inequality, J. Math. Soc. Japan, in press; S. Kuroda, A generalization of the Shestakov-Umirbaev inequality, J. Math. Soc. Japan, in press · Zbl 1144.14046
[15] Masuda, K., Torus actions and kernels of locally nilpotent derivations with slices, (Affine Algebraic Geometry. Affine Algebraic Geometry, Osaka, Japan (2007), Osaka University Press), 295-305 · Zbl 1151.14042
[16] Miyanishi, M.; Sugie, T., Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ., 20, 11-42 (1980) · Zbl 0445.14017
[17] Raynaud, M., Modules projectifs universels, Invent. Math., 6, 1-26 (1968) · Zbl 0216.32601
[18] Russell, K. P., On affine-ruled rational surfaces, Math. Ann., 255, 287-302 (1981) · Zbl 0438.14024
[19] Sathaye, A., Polynomial ring in two variables over a D.V.R: A criterion, Invent. Math., 74, 159-168 (1983) · Zbl 0538.13006
[20] Shestakov, I. P.; Umirbaev, U. U., Poisson brackets and two-generated subalgebras of ring of polynomials, J. Amer. Math. Soc., 17, 181-196 (2004) · Zbl 1044.17014
[21] S. Vénéreau, A parachute for the degree of a polynomial in algebraically independent ones, preprint, 2007, 4 pages; S. Vénéreau, A parachute for the degree of a polynomial in algebraically independent ones, preprint, 2007, 4 pages
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.