×

Spectral asymptotics for arithmetic quotients of \(\text{SL}(n,{\mathbb R})/\text{SO}(n)\). (English) Zbl 1220.11071

Let \(X=\text{SL}(n,\mathbb R)/\text{SO}(n)\) be the symmetric space of positive-definite quadratic forms in \(n\geq2\) variables up to homothety and \(\Gamma\) be a principal congruence subgroup of level \(N\geq3\) in \(\text{SL}(n,\mathbb Z)\). The commutative algebra of invariant differential operators on \(\text{SL}(n,\mathbb R)\) acts on the cuspidal part of \(L^2(\Gamma\backslash X)\), with joint cuspidal spectrum \(\Lambda_{\text{cusp}}(\Gamma)\) identified to a discrete \(W\)-invariant subset of \( \mathfrak{a}^*_{\mathbb C}\) where \(\mathfrak{a}\) is the Lie algebra of the group \(A\subset \text{SL}(n,\mathbb R)\) of diagonal matrices with positive real diagonal entries and \(W\) the associated Weyl group to the pair \((\text{SL}(n,\mathbb R),A)\).
Counting eigenvalues with multiplicity, the authors prove the asymptotic estimates when \( t\to+\infty\) \[ \begin{gathered} \left|\Lambda_{\text{cusp}}(\Gamma)\cap t\Omega\right| = {\text{Vol}(\Gamma\backslash X)} \text{Vol}({t\Omega}) +\mathcal{O}(t^{d-1}(\log t)^{\max(n,3)}),\\ \left|\Lambda_{\text{cusp}}(\Gamma)\cap (tB_1\setminus\text{i}\mathfrak{a}^*) \right| =\mathcal{O}(t^{d-2}). \end{gathered} \tag{\(W\)} \] Here, the set \(\Omega\) is any \(W\)-invariant bounded regular domain in \(\text{i}\mathfrak{a}^*\) and \(B_1\) is the unit ball in \(\mathfrak{a}^*_\mathbb C\), the space \(\text{i}\mathfrak{a}^*\) is endowed with a well normalized Plancherel measure and \(d\) is the dimension of the symmetric space \(X\). These results can be formulated in adelic terms, the convenient framework for the formulation of the Langlands program and the Arthur’s trace formula.
The Weyl’s law \((W)\) with remainder estimate for the cuspidal spectrum extends the classical result for arithmetical lattices of \(\text{SL}(2,\mathbb R)\) due to [A. Selberg, Collected Papers. Volume II. Berlin etc.: Springer-Verlag (1991; Zbl 0729.11001)], the uniform cases in higher rank proved by J. J. Duistermaat, J. A. C. Kolk and V. S. Varadarajan [[DKV], Invent. Math. 52, 27–93 (1979; Zbl 0434.58019)] and the Weyl’s law proved by W. Müller [Ann. Math. (2) 165, No. 1, 275–333 (2007; Zbl 1119.11027)] for the cuspidal spectrum of the Laplace-Beltrami operator on \(\Gamma\backslash\text{SL}(n,\mathbb R)/\text{SO}(n)\). The Ramanujan conjecture for \(\text{GL}(n)\) states that \(\Lambda_{\text{cusp}}(\Gamma)\subset i\mathfrak{a}^*\), so that the second bound is empty if the Ramanujan conjecture is true.
For the rank one case (eg arithmetic lattices of \(\text{SL}(2,\mathbb R)\)), the authors sketch a proof based on the Selberg’s trace formula and Hörmander’s method on spectral asymptotics for elliptic operators. In the higher rank case which is the heart of the paper, they follow the [DKV] method, taking an appropriate family of test functions in the Arthur’s trace formula (which forces to work in the adelic setting) so that the contributions of the identity class on the geometrical side and of the cuspidal spectrum in the spectral side are dominant. Analysis of the unipotent conjugacy classes terms on the geometrical side represents the main new technical difficulties, worked out by stationary phase arguments. Arguments in Müller (2007) are used to control the continuous spectrum contribution on the spectral side of the trace formula. It requires knowledge on general Eisenstein series and automorphic \(L\)-functions associated to cusp forms on lower rank groups: such detailed information for general reductive algebraic \(\mathbb Q\)-group \(G\) is for the time being missing, which is the main obstacle to the proof of analogue Weyl’s law for such general \(G\), beyond the case of \(\text{SL}(n,\mathbb R)\) as solved in this paper and a few other low dimensional cases.

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F72 Spectral theory; trace formulas (e.g., that of Selberg)
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
32N15 Automorphic functions in symmetric domains
11F03 Modular and automorphic functions
22E40 Discrete subgroups of Lie groups

References:

[1] J. G. Arthur, A trace formula for reductive groups, I: Terms associated to classes in \(G(\mathbf Q)\) , Duke Math. J. 45 (1978), 911–952. · Zbl 0499.10032 · doi:10.1215/S0012-7094-78-04542-8
[2] -, On a family of distributions obtained from Eisenstein series, I: Application of the Paley-Wiener theorem , Amer. J. Math. 104 (1982), 1243–1288. JSTOR: · Zbl 0541.22010 · doi:10.2307/2374061
[3] -, On a family of distributions obtained from Eisenstein series, II : Explicit formulas, Amer. J. Math. 104 (1982), 1289–1336. JSTOR: · Zbl 0562.22004 · doi:10.2307/2374062
[4] -, A measure on the unipotent variety , Canad. J. Math. 37 (1985), 1237–1274. · Zbl 0589.22016
[5] -, The local behaviour of weighted orbital integrals , Duke Math. J. 56 (1988), 223–293. · Zbl 0649.10020 · doi:10.1215/S0012-7094-88-05612-8
[6] -, The \(L^ 2\) -Lefschetz numbers of Hecke operators, Invent. Math. 97 (1989), 257–290. · Zbl 0692.22004 · doi:10.1007/BF01389042
[7] -, “Unipotent automorphic representations: Conjectures” in Orbites unipotentes et représentations, II , Astérisque 171 –172., Soc. Math. France, Montrouge, 1989, 13–71. · Zbl 0728.22014
[8] G. V. Avakumović, Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten , Math. Z. 65 (1956), 327–344. · Zbl 0070.32601 · doi:10.1007/BF01473886
[9] A. Borel, Some finiteness properties of adele groups over number fields , Inst. Hautes Études Sci. Publ. Math. 16 (1963), 5–30. · Zbl 0135.08902 · doi:10.1007/BF02684289
[10] -, Introduction aux groupes arithmétiques , Publications de l’Institut de Mathématique de l’Université de Strasbourg 15 , Actualités Sci. Indust. 1341 , Hermann, Paris, 1969.
[11] P. Deligne, D. Kazhdan, and M.-F. VignéRas, “Représentations des algèbres centrales simples \(p\)-adiques” in Représentations des algèbres centrales simples \(p\)-adiques , Travaux en Cours, Hermann, Paris, 1984, 33–117. · Zbl 0583.22009
[12] J. J. Duistermaat and V. W. Guillemin, “The spectrum of positive elliptic operators and periodic geodesics” in Differential Geometry (Stanford, Calif., 1973) , Proc. Sympos. Pure Math. XXVII , Part 2, Amer. Math. Soc., Providence, 1975, 205–209. · Zbl 0322.35071
[13] J. J. Duistermaat, J. A. C. Kolk, and V. S. Varadarajan, Spectra of compact locally symmetric manifolds of negative curvature , Invent. Math. 52 (1979), 27–93.; Erratum, 54 (1979), 101. \(\!\); Mathematical Reviews (MathSciNet): · Zbl 0434.58019 · doi:10.1007/BF01389856
[14] -, Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups , Compositio Math. 49 (1983), 309–398. · Zbl 0524.43008
[15] T. Finis, E. Lapid, and W. MüLler, On the spectral side of Arthur’s trace formula, II , preprint, 2007. · Zbl 1241.52006
[16] R. Gangolli, On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups , Ann. of Math. (2) 93 (1971), 150–165. JSTOR: · Zbl 0232.43007 · doi:10.2307/1970758
[17] M. Goresky, R. Kottwitz, and R. Macpherson, Discrete series characters and the Lefschetz formula for Hecke operators , Duke Math. J. 89 (1997), 477–554.; Correction, 92 (1998), 665–666. \(\!\); Mathematical Reviews (MathSciNet): · Zbl 0888.22011 · doi:10.1215/S0012-7094-97-08922-5
[18] Harish-Chandra, Spherical functions on a semisimple Lie group, I , Amer. J. Math. 80 (1958), 241–310. JSTOR: · Zbl 0093.12801 · doi:10.2307/2372786
[19] -, Spherical functions on a semisimple Lie group, II , Amer. J. Math. 80 (1958), 553–613. JSTOR: · Zbl 0093.12801 · doi:10.2307/2372772
[20] -, Discrete series for semisimple Lie groups, II . Explicit determination of the characters, Acta Math. 116 (1966), 1–111. · Zbl 0199.20102 · doi:10.1007/BF02392813
[21] -, Two theorems on semi-simple Lie groups , Ann. of Math. (2) 83 (1966), 74–128. JSTOR: · Zbl 0199.46403 · doi:10.2307/1970472
[22] A. D. Hejhal, The Selberg Trace Formula for \(\mathrm PSL(2,R)\) , Vol. I, Lecture Notes in Math. 548 , Springer, Berlin, 1976. · Zbl 0347.10018 · doi:10.1007/BFb0079608
[23] S. Helgason, An analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces , Math. Ann. 165 (1966), 297–308. · Zbl 0178.17101 · doi:10.1007/BF01344014
[24] -, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions , corrected reprint of the 1984 original, Math. Surveys and Monogr. 83 , Amer. Math. Soc., Providence, 2000. · Zbl 0965.43007
[25] -, Differential Geometry, Lie Groups, and Symmetric Spaces , corrected reprint of the 1978 original, Grad. Studies in Math. 34 , Amer. Math. Soc., Providence, 2001. · Zbl 0993.53002
[26] L. HöRmander, The spectral function of an elliptic operator , Acta Math. 121 (1968), 193–218. · Zbl 0164.13201 · doi:10.1007/BF02391913
[27] J. E. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups , Math. Surveys and Monogr. 43 , Amer. Math. Soc., Providence, 1995. · Zbl 0834.20048
[28] M. N. Huxley, “Scattering matrices for congruence subgroups” in Modular Forms (Durham, England, 1983) , Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, England, 1984, 141–156. · Zbl 0554.10016
[29] H. Iwaniec, W. Luo, and P. Sarnak, Low lying zeros of families of \(L\) -functions, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 55–131. · Zbl 1012.11041 · doi:10.1007/BF02698741
[30] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms, II , Amer. J. Math. 103 (1981), 777–815. JSTOR: · Zbl 0491.10020 · doi:10.2307/2374050
[31] -, On Euler products and the classification of automorphic representations, I , Amer. J. Math. 103 (1981), 499–558. JSTOR: · Zbl 0473.12008 · doi:10.2307/2374103
[32] J.-P. Labesse and W. MüLler, Weak Weyl’s law for congruence subgroups , Asian J. Math. 8 (2004), 733–745. · Zbl 1162.11344 · doi:10.4310/AJM.2004.v8.n4.a21
[33] R. P. Langlands, The dimension of spaces of automorphic forms , Amer. J. Math. 85 (1963), 99–125. JSTOR: · Zbl 0113.25802 · doi:10.2307/2373189
[34] E. Lindenstrauss and A. Venkatesh, Existence and Weyl’s law for spherical cusp forms , Geom. Funct. Anal. 17 (2007), 220–251. · Zbl 1137.22011 · doi:10.1007/s00039-006-0589-0
[35] W. Luo, Nonvanishing of \(L\)-values and the Weyl law , Ann. of Math (2) 154 (2001), 477–502. JSTOR: · Zbl 1003.11019 · doi:10.2307/3062104
[36] D. S. Miller, On the existence and temperedness of cusp forms for \(\mathrm SL_ 3(\mathbb Z)\) , J. Reine Angew. Math. 533 (2001), 127–169. · Zbl 0996.11040 · doi:10.1515/crll.2001.029
[37] C. Moeglin and J.-L. Waldspurger, Le spectre résiduel de \(\mathrm GL(n)\) , Ann. Sci. École Norm. Sup. (4) 22 (1989), 605–674. · Zbl 0696.10023
[38] W. MüLler, Weyl’s law for the cuspidal spectrum of \(\mathrm SL_ n\) , Ann. of Math. (2) 165 (2007), 275–333. · Zbl 1119.11027 · doi:10.4007/annals.2007.165.275
[39] -, “Weyl’s law in the theory of automorphic forms” in Groups and Analysis: The Legacy of Hermann Weyl (Bielefeld, Germany, 2006) , London Math. Soc. Lecture Note Ser. 354 , Cambridge Univ. Press, Cambridge, 2008, 133–163.
[40] W. MüLler and B. Speh, Absolute convergence of the spectral side of the Arthur trace formula for \(\mathrm GL_ n\) , with an appendix by E. M. Lapid, Geom. Funct. Anal. 14 (2004), 58–93. · Zbl 1083.11031 · doi:10.1007/s00039-004-0452-0
[41] D. Mumford, Abelian varieties , Tata Inst. Fund. Res. Stud. in Math. 5 , Oxford Univ. Press, London, 1970. · Zbl 0223.14022
[42] P. Orlik and H. Terao, Arrangements of Hyperplanes , Grundlehren Math. Wiss. 300 , Springer, Berlin, 1992. · Zbl 0757.55001
[43] R. S. Phillips and P. Sarnak, The Weyl theorem and the deformation of discrete groups , Comm. Pure Appl. Math. 38 (1985), 853–866. · Zbl 0614.10027 · doi:10.1002/cpa.3160380614
[44] -, Perturbation theory for the Laplacian on automorphic functions , J. Amer. Math. Soc. 5 (1992), 1–32. JSTOR: · Zbl 0743.30039 · doi:10.2307/2152749
[45] A. Reznikov, Eisenstein matrix and existence of cusp forms in rank one symmetric spaces , Geom. Funct. Anal. 3 (1993), 79–105. · Zbl 0785.11034 · doi:10.1007/BF01895514
[46] P. Sarnak, “On cusp forms” in The Selberg Trace Formula and Related Topics (Brunswick, Maine, 1984) , Contemp. Math. 53 , Amer. Math. Soc., Providence, 1986, 393–407.
[47] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series , J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. · Zbl 0072.08201
[48] -, Collected Papers, Vol. I , Springer, Berlin, 1989. · Zbl 0669.12001
[49] V. S. Varadarajan, “The method of stationary phase and applications to geometry and analysis on Lie groups” in Algebraic and Analytic Methods in Representation Theory (Sønderborg, Denmark, 1994) , Perspect. Math. 17 , Academic Press, San Diego, 1997, 167–242. · Zbl 0903.43004 · doi:10.1016/B978-012625440-2/50005-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.