×

Natural convection in fluid-superposed porous layers heated locally from below. (English) Zbl 1219.80023

Summary: A numerical study of two-dimensional natural convection in fluid-superposed porous layers heated locally from below is reported based on the one-domain formulation of the conservation equations. The effects of five dimensionless parameters on overall Nusselt number are investigated: Rayleigh number based on overall layer height, heater-to-cavity length ratio, porous layer-to-cavity height ratio, domain aspect ratio, and Darcy number. Streamline and isotherm patterns indicate that convective motion is restricted to the overlying fluid layer with some penetration into the porous layer. Nusselt numbers increase with a decrease in the heater length and height ratio, and increase with the Darcy number. The size of the heat source does not affect the dependence of the heat transfer coefficient on height ratio and Darcy number. For domains with large aspect ratios, complex flow restructuring is observed with an increase in Rayleigh number. The present results represent an extension of the well studied problem of buoyant convection in fluid-superposed porous layers with a fully heated lower surface.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76R10 Free convection
76S05 Flows in porous media; filtration; seepage
76M12 Finite volume methods applied to problems in fluid mechanics
80M12 Finite volume methods applied to problems in thermodynamics and heat transfer

Software:

CSparse
Full Text: DOI

References:

[1] Prasad, V.: Convective flow interaction and heat transfer between fluid and porous layers, Proceedings of NATO ASI, convective heat and mass transfer in porous media, 563-615 (1991)
[2] Nield, D. A.; Bejan, A.: Convection in porous media, (1999) · Zbl 0924.76001
[3] Gobin, D.; Goyeau, B.: Natural convection in partially porous media: a brief overview, Int. J. Numer. methods heat fluid flow 18, No. 3/4, 465-490 (2008) · Zbl 1231.76309 · doi:10.1108/09615530810853682
[4] W.J. Sun, Convective Instability in Superposed Porous and Free Layers, Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 1973.
[5] Nield, D. A.: Onset of convection in a fluid layer overlying a layer of a porous medium, J. fluid mech. 81, No. 3, 513-522 (1977) · Zbl 0364.76032 · doi:10.1017/S0022112077002195
[6] Somerton, C. W.; Catton, I.: On the thermal instability of superposed porous and fluid layers, J. heat transfer 104, 160-165 (1982)
[7] Chen, F.; Chen, C. F.: Onset of finger convection in a horizontal porous layer underlying a fluid layer, J. heat transfer 110, 403-409 (1988)
[8] Chen, F.: Throughflow effects on convective instability in superposed fluid and porous layers, J. fluid mech. 231, 113-133 (1991) · Zbl 0729.76037 · doi:10.1017/S0022112091003336
[9] Chen, F.; Chen, C. F.; Pearlstein, A. J.: Convective instability in superposed fluid and anisotropic porous layers, Phys. fluids A: fluid dyn. 3, No. 4, 556-565 (1991) · Zbl 0735.76029 · doi:10.1063/1.858117
[10] Chen, F.; Hsu, L.: Onset of thermal convection in an anisotropic and inhomogeneous porous layer underlying a fluid layer, J. appl. Phys. 69, No. 9, 6289-6301 (1991)
[11] Straughan, B.: Effect of property variation and modeling on convection in a fluid overlying a porous layer, Int. J. Numer. anal. Methods geomech. 26, 75-97 (2002) · Zbl 1004.76091 · doi:10.1002/nag.193
[12] Zhao, P.; Chen, C. F.: Stability analysis of double-diffusive convection in superposed porous and fluid layers using a one-equation model, Int. J. Heat mass transfer 44, 4625-4633 (2001) · Zbl 1043.76024 · doi:10.1016/S0017-9310(01)00102-8
[13] Hirata, S.; Goyeau, B.; Gobin, D.; Carr, M.; Cotta, R.: Linear stability of natural convection in superposed fluid and porous layers: influence of the interfacial modeling, Int. J. Heat mass transfer 50, 1356-1367 (2007) · Zbl 1118.80003 · doi:10.1016/j.ijheatmasstransfer.2006.09.038
[14] Hirata, S.; Goyeau, B.; Gobin, D.: Stability of natural convection in superposed fluid and porous layers: influence of the interfacial jump boundary condition, Phys. fluids 19, No. 058102, 1-4 (2007) · Zbl 1146.76412 · doi:10.1063/1.2730877
[15] Hirata, S.; Goyeau, B.; Gobin, D.; Chandesris, M.; Jamet, D.: Stability of natural convection in superposed fluid and porous layers: equivalence of the one- and two-domain approaches, Int. J. Heat mass transfer 52, 533-536 (2009) · Zbl 1156.80330 · doi:10.1016/j.ijheatmasstransfer.2008.07.045
[16] Poulikakos, D.: Buoyancy-driven convection in a horizontal fluid layer extending over a porous substrate, Phys. fluids 29, No. 12, 3949-3957 (1986)
[17] Poulikakos, D.; Bejan, A.; Selimos, B.; Blake, K.: High Rayleigh number convection in a fluid overlaying a porous bed, Int. J. Heat fluid flow 7, No. 2, 109-116 (1986)
[18] Chen, F.; Chen, C. F.: Convection in superposed fluid and porous layers, J. fluid mech. 234, 97-119 (1992) · Zbl 0850.76217 · doi:10.1017/S0022112092000715
[19] Kim, S. J.; Choi, C. Y.: Convective heat transfer in porous and overlying fluid layers heated from below, Int. J. Heat mass transfer 39, No. 2, 319-329 (1996)
[20] Chen, F.; Chen, C. F.: Experimental investigation of convective stability in a superposed fluid and porous layer when heated from below, J. fluid mech. 207, 311-321 (1989)
[21] Rhee, S. J.; Dhir, V. K.; Catton, I.: Natural convection heat transfer in beds of inductively heated particles, J. heat transfer 100, 78-85 (1978)
[22] Prasad, V.; Tian, Q.: An experimental study of thermal convection in fluid superposed porous layers heated from below, Heat transfer 5, 207-212 (1990)
[23] Prasad, V.; Brown, K.; Tian, Q.: Flow visualization and heat transfer experiments in fluid – superposed packed beds heated from below, Exp. therm. Fluid sci. 4, No. 1, 12-24 (1991)
[24] Prasad, V.: Flow instabilities and heat transfer in fluid overlying horizontal porous layers, Exp. therm. Fluid sci. 6, No. 2, 135-146 (1993)
[25] Beavers, G. S.; Joseph, D. D.: Boundary conditions at a naturally permeable wall, J. fluid mech. 30, No. 1, 197-207 (1977)
[26] Neale, G.; Nader, W.: Practical significance of Brinkman extension of Darcy’s law: coupled parallel flows within a channel and a boundary porous medium, Can. J. Chem. eng. 52, 472-478 (1974)
[27] Leonard, B. P.: A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Comput. methods appl. Mech. eng. 19, 59-98 (1979) · Zbl 0423.76070 · doi:10.1016/0045-7825(79)90034-3
[28] Hayase, T.; Humphrey, J.; Grief, R.: A consistently formulated quick scheme for fast and stable convergence using finite-volume iterative calculation procedures, J. comput. Phys. 98, 108-118 (1992) · Zbl 0743.76054 · doi:10.1016/0021-9991(92)90177-Z
[29] Patankar, S.: Numerical heat transfer and fluid flow, (1980) · Zbl 0521.76003
[30] Davis, T. A.: Direct methods for sparse linear systems, (2006) · Zbl 1119.65021
[31] Platten, J. K.; Legros, J. C.: Convection in liquids, (1984) · Zbl 0545.76048
[32] Soong, C. Y.; Tzeng, P. Y.; Chiang, D. C.; Sheu, T. S.: Numerical study on mode-transition of natural convection in differentially heated inclined enclosures, Int. J. Heat mass transfer 39, No. 14, 2869-2882 (1996) · Zbl 0964.76544 · doi:10.1016/0017-9310(95)00378-9
[33] Clever, R. M.; Busse, F. H.: Transition to time-dependent convection, J. fluid mech. 65, 625-635 (1974) · Zbl 0291.76019 · doi:10.1017/S0022112074001571
[34] Hollands, K. G. T.; Raithby, G. D.; Konicek, L.: Correlation equations for heat transfer in horizontal layers of air and water, Int. J. Heat mass transfer 18, 879-884 (1975)
[35] Caltagirone, J. P.: Thermoconvective instabilities in a horizontal porous layer, J. fluid mech. 72, No. 20, 269-287 (1975) · Zbl 0314.76035 · doi:10.1017/S0022112075003345
[36] Combarnous, M. A.; Bories, S.: Hydrothermal convection in saturated porous media, Adv. hydrosci. 10, 231-307 (1975)
[37] Elder, J. W.: Steady free convection in a porous medium heated from below, J. fluid mech. 27, 29-48 (1967)
[38] Buretta, R. J.; Berman, A. S.: Convective heat transfer in a liquid saturated porous layer, J. appl. Mech. 98, 249-254 (1976)
[39] Prasad, V.; Kulacki, F. A.: Natural convection in horizontal porous layers with localized heating from below, J. heat transfer 109, 795-798 (1987)
[40] G. Rajen, F.A. Kulacki, Natural convection in a porous layer locally heated from below – a regional laboratory model for a nuclear waste repository, in: E.V. McAssay Jr., V.E. Schrock (Eds.), Twenty Fourth National Heat Transfer Conference and Exhibition, Pittsburgh, PA, ASME HTD, vol. 67, 1987, pp. 19 – 26.
[41] Papanicolaou, E.; Gopalakrishna, S.: Natural convection in shallow, horizontal air layers encountered in electronic cooling, J. electron. Packag. 17, 307-316 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.