×

On the self-similar solutions of the 3D Euler and the related equations. (English) Zbl 1219.35183

Summary: We generalize and localize the previous results by the author on the study of self-similar singularities for the 3D Euler equations. More specifically we extend the restriction theorem for the representation for the vorticity of the Euler equations in a bounded domain, and localize the results on asymptotically self-similar singularities. We also present progress towards relaxation of the decay condition near infinity for the vorticity of the blow-up profile to exclude self-similar blow-ups. The case of the generalized Navier-Stokes equations having the laplacian with fractional powers is also studied. We apply the similar arguments to the other incompressible flows, e.g. the surface quasi-geostrophic equations and the 2D Boussinesq system both in the inviscid and supercritical viscous cases.

MSC:

35Q31 Euler equations
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35B44 Blow-up in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984) · Zbl 0573.76029 · doi:10.1007/BF01212349
[2] Caffarelli L., Vasseur A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010) · Zbl 1204.35063 · doi:10.4007/annals.2010.171.1903
[3] Chae D.: Nonexistence of self-similar singularities for the 3D incompressible Euler equations. Commun. Math. Phys. 273(1), 203–215 (2007) · Zbl 1157.35079 · doi:10.1007/s00220-007-0249-8
[4] Chae D.: Nonexistence of asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Math. Ann. 338(2), 435–449 (2007) · Zbl 1147.35068 · doi:10.1007/s00208-007-0082-6
[5] Chae D.: Global regularity for the 2-D Boussinesq equations with partial viscous terms. Adv. in Math. 203(2), 497–513 (2006) · Zbl 1100.35084 · doi:10.1016/j.aim.2005.05.001
[6] Chae D.: On the continuation principles for the Euler equations and the quasi-geostrophic equation. J. Diff. Eqns. 227, 640–651 (2006) · Zbl 1105.35067 · doi:10.1016/j.jde.2005.12.013
[7] Chae D.: On the regularity conditions for the dissipative quasi-geostrophic equations. SIAM. J. Math. Anal. 37(5), 1649–1656 (2006) · Zbl 1141.76010 · doi:10.1137/040616954
[8] Constantin P.: On the Euler equations of incompressible fluids. Bull. Amer. Math. Soc. 44, 603–621 (2007) · Zbl 1132.76009 · doi:10.1090/S0273-0979-07-01184-6
[9] Constantin P.: Geometric Statistics in Turbulence. SIAM Rev. 36, 73–98 (1994) · Zbl 0803.35106 · doi:10.1137/1036004
[10] Constantin P., Fefferman C., Majda A.: Geometric constraints on potential singularity formulation in the 3-D Euler equations. Comm. P.D.E 21(3-4), 559–571 (1996) · Zbl 0853.35091 · doi:10.1080/03605309608821197
[11] Constantin P., Majda A., Tabak E.: Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7, 1459–1533 (1994) · Zbl 0809.35057
[12] Constantin P., Wu J.: Hölder continuity of solutions of supercritical dissipative hydrodynamice transport equations. Ann. Inst. Henri Poincaré, Analyse Non Linéaire 26, 159–180 (2009) · Zbl 1163.76010 · doi:10.1016/j.anihpc.2007.10.002
[13] Constantin P., Wu J.: Regularity of Hölder continuous solutions of the supercritical quasigeostrophic equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25, 1103–1110 (2008) · Zbl 1149.76052 · doi:10.1016/j.anihpc.2007.10.001
[14] Constantin P., Wu J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999) · Zbl 0957.76093 · doi:10.1137/S0036141098337333
[15] Córdoba D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. Math. 148(2), 1135–1152 (1998) · Zbl 0920.35109 · doi:10.2307/121037
[16] Córdoba A., Córdoba D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004) · Zbl 1309.76026 · doi:10.1007/s00220-004-1055-1
[17] Córdoba D., Fefferman C.: On the collapse of tubes carried by 3D incompressible flows. Commun. Math. Phys. 222(2), 293–298 (2001) · Zbl 0999.76020 · doi:10.1007/s002200100502
[18] Córdoba D., Fefferman C., De La LLave R.: On squirt singularities in hydrodynamics. SIAM J. Math. Anal. 36(1), 204–213 (2004) · Zbl 1078.76018 · doi:10.1137/S0036141003424095
[19] Danchin, R., Paicu, M.: Global existence results for the anisotropicBoussinesq system in dimension two, http://arXiv.org/abs/0809.4984v1 [math.Ap], 2008 · Zbl 1143.76432
[20] Deng J., Hou T.Y., Yu X.: Geometric and Nonblowup of 3D Incompressible Euler Flow. Comm. P.D.E 30, 225–243 (2005) · Zbl 1142.35549 · doi:10.1081/PDE-200044488
[21] Euler L.: Principes généraux du mouvement des fluides. Mémoires de l’académie des sciences de Berlin 11, 274–315 (1755)
[22] Giga Y., Kohn R.V.: Asymptotically Self-Similar Blow-up of Semilinear Heat Equations. Comm. Pure Appl. Math. 38, 297–319 (1985) · Zbl 0585.35051 · doi:10.1002/cpa.3160380304
[23] Hmidi T., Keraani S., Rousset F.: Global well-posedness for Euler-Boussinesq system. Commun. Par. Differ. Equ 36(3), 420–445 (2011) · Zbl 1284.76089 · doi:10.1080/03605302.2010.518657
[24] Hmidi T., Keraani S., Rousset F.: Global well-posedness for a Boussinesq-Navier-Stokes System with critical dissipation. J. Differ. Equ 249(9), 2147–2174 (2010) · Zbl 1200.35228 · doi:10.1016/j.jde.2010.07.008
[25] Hou T.Y., Li C.: Global well-posedness of the viscous Boussinesq equations. Disc. Cont. Dyn. Sys. 12(1), 1–12 (2005) · Zbl 1274.76185
[26] Kiselev A., Nazarov F., Volberg A.: Global well-posedness for the critical 2D dissipative quasi- geostrophic equation. Invent. Math. 167(3), 445–453 (2007) · Zbl 1121.35115 · doi:10.1007/s00222-006-0020-3
[27] Kato T.: Nonstationary flows of viscous and ideal fluids in $${\(\backslash\)mathbb {R}\^3}$$ . J. Func. Anal. 9, 296–305 (1972) · Zbl 0229.76018 · doi:10.1016/0022-1236(72)90003-1
[28] Leray J.: Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[29] Majda A., Bertozzi A.: Vorticity and Incompressible Flow. Cambridge Univ. Press, Cambridge (2002) · Zbl 0983.76001
[30] Miller J.R., O’Leary M., Schonbek M.: Nonexistence of singular pseudo-self-similar solutions of the Navier-Stokes system. Math. Ann. 319(4), 809–815 (2001) · Zbl 0983.35103 · doi:10.1007/PL00004460
[31] Nečas J., Ružička M., Šverák V.: On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math. 176(2), 283–294 (1996) · Zbl 0884.35115 · doi:10.1007/BF02551584
[32] Tsai T-P.: On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates. Arch. Rat. Mech. Anal. 143(1), 29–51 (1998) · Zbl 0916.35084 · doi:10.1007/s002050050099
[33] Wu J.: The quasi-geostrophic equation and its two regularizations. Comm. P.D.E 27, 1161–1181 (2002) · Zbl 1012.35067 · doi:10.1081/PDE-120004898
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.