×

Variable-fidelity aerodynamic shape optimization. (English) Zbl 1218.90012

Koziel, Slawomir (ed.) et al., Computational optimization, methods and algorithms. Berlin: Springer (ISBN 978-3-642-20858-4/hbk; 978-3-642-20859-1/ebook). Studies in Computational Intelligence 356, 179-210 (2011).
Summary: Aerodynamic shape optimization (ASO) plays an important role in the design of aircraft, turbomachinery and other fluid machinery. Simulation-driven ASO involves the coupling of computational fluid dynamics (CFD) solvers with numerical optimization methods. Although being relatively mature and widely used, ASO is still being improved and numerous challenges remain. This chapter provides an overview of simulation-driven ASO methods, with an emphasis on surrogate-based optimization (SBO) techniques. In SBO, a computationally cheap surrogate model is used in lieu of an accurate high-fidelity CFD simulation in the optimization process. Here, a particular focus is given to SBO exploiting surrogate models constructed from corrected physics-based low-fidelity models, often referred to as variable- or multi-fidelity optimization.
For the entire collection see [Zbl 1217.90006].

MSC:

90-08 Computational methods for problems pertaining to operations research and mathematical programming
90C90 Applications of mathematical programming
Full Text: DOI

References:

[1] Hicks, R. M.; Henne, P. A., Wing Design by Numerical Optimization, Journal of Aircraft, 15, 7, 407-412 (1978) · doi:10.2514/3.58379
[2] Braembussche, R. A.; Thevenin, D.; Janiga, G., Numerical Optimization for Advanced Turbomachinery Design, Optimization and Computational Fluid Dynamics, 147-189 (2008), Heidelberg: Springer, Heidelberg · Zbl 1298.76148 · doi:10.1007/978-3-540-72153-6_6
[3] Percival, S.; Hendrix, D.; Noblesse, F., Hydrodynamic Optimization of Ship Hull Forms, Applied Ocean Research, 23, 6, 337-355 (2001) · doi:10.1016/S0141-1187(02)00002-0
[4] Leoviriyakit, K., Kim, S., Jameson, A.: Viscous Aerodynamic Shape Optimization of Wings including Planform Variables. In: 21st Applied Aerodynamics Conference, Orlando, Florida, June 23-26 (2003)
[5] van Dam, C. P., The aerodynamic design of multi-element high-lift systems for transport airplanes, Progress in Aerospace Sciences, 8, 2, 101-144 (2002)
[6] Lian, Y.; Shyy, W.; Viieru, D.; Zhang, B., Membrane Wing Aerodynamics for Micro Air Vehicles, Progress in Aerospace Sciences, 39, 6, 425-465 (2003) · doi:10.1016/S0376-0421(03)00076-9
[7] Secanell, M.; Suleman, A.; Gamboa, P., Design of a Morphing Airfoil Using Aerodynamic Shape Optimization, AIAA Journal, 44, 7, 1550-1562 (2006) · doi:10.2514/1.18109
[8] Antoine, N.E., Kroo, I.A.: Optimizing Aircraft and Operations for Minimum Noise. In: AIAA Paper 2002-5868, AIAA‘s Aircraft Technology, Integration, and Operations (ATIO) Technical Forum, Los Angeles, California, October 1-3 (2002)
[9] Hosder, S., Schetz, J.A., Grossman, B., Mason, W.H.: Airframe Noise Modeling Appropriate for Multidisciplinary Design and Optimization. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper 2004-0698, January 5-8 (2004)
[10] Giannakoglou, K. C.; Papadimitriou, D. I.; Thevenin, D.; Janiga, G., Adjoint Methods for Shape Optimization, Optimization and Computational Fluid Dynamics, 79-108 (2008), Heidelberg: Springer, Heidelberg · Zbl 1298.76145 · doi:10.1007/978-3-540-72153-6_4
[11] Celik, F.; Guner, M., Energy Saving Device of Stator for Marine Propellers, Ocean Engineering, 34, 5-6, 850-855 (2007) · doi:10.1016/j.oceaneng.2006.03.016
[12] Jameson, A., Aerodynamic Design via Control Theory, Journal of Scientific Computing, 3, 233-260 (1988) · Zbl 0676.76055 · doi:10.1007/BF01061285
[13] Reuther, J., Jameson, A.: Control Theory Based Airfoil Design for Potential Flow and a Finitie Volume Discretization. In: AIAA Paper 94-0499, AIAA 32nd Aerospace Sciences Meeting and Exhibit, Reno, Nevada (January 1994)
[14] Jameson, A., Reuther, J.: Control Theory Based Airfoil Design using Euler Equations. In: Proceedings of AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analsysis and Optimization, Panama City Beach, pp. 206-222 (September 1994)
[15] Reuther, J., Jameson, A., Alonso, J.J., Rimlinger, M.J., Sauders, D.: Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computing. In: 35th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, AIAA Paper 97-0103, Januvary 6-9 (1997)
[16] Kim, S., Alonso, J.J., Jameson, A.: Design Optimization of High-Lift Configurations Using a Viscous Continuous Adjoint Method. In: AIAA paper 2002-0844, AIAA 40th Aerospace Sciences Meeting & Exhibit, Reno, NV (January 2002)
[17] Eyi, S.; Lee, K. D.; Rogers, S. E.; Kwak, D., High-lift design optimization using Navier-Stokes equations, Journal of Aircraft, 33, 3, 499-504 (1996) · doi:10.2514/3.46972
[18] Nemec, M., Zingg, D.W.: Optimization of high-lift configurations using a Newton-Krylov algorithm. In: 16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, June 23-26 (2003)
[19] Nemec, M., Zingg, D.W., Pulliam, T.H.: Multi-Point and Multi-Objective Aerodynamic Shape Optimization. In: AIAA Paper 2002-5548, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Altanta, Georgia, September 4-6 (2002)
[20] Giannakoglou, K. C., Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence, Progress in Aerospace Sciences, 38, 2, 43-76 (2002) · doi:10.1016/S0376-0421(01)00019-7
[21] Hicks, R.M., Murman, E.M., Vanderplaats, G.: An Assessment of Airfoil Design by Numerical Optimization. NASA TM 3092 (July 1974)
[22] FLUENT, ver. 6.3.26, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317 (2006)
[23] GAMBIT. ver. 2.4.6, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317 (2006)
[24] Tannehill, J. C.; Anderson, D. A.; Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer (1997), Abington: Taylor & Francis, Abington
[25] Hirsch, C.: Numerical Computation of Internal and External Flows - Fundamentals of Computational Fluid Dynamics, 2nd ed., Butterworth-Heinemann (2007)
[26] Leifsson, L.; Koziel, S., Multi-fidelity design optimization of transonic airfoils using physics-based surrogate modeling and shape-preserving response prediction, Journal of Computational Science, 1, 2, 98-106 (2010) · doi:10.1016/j.jocs.2010.03.007
[27] Lepine, J.; Guibault, F.; Trepanier, J.-Y.; Pepin, F., Optimized Nonuniform Rational B-Spline Geometrical Representation for Aerodynamic Design of Wings, AIAA Journal, 39, 11, 2033-2041 (2001) · doi:10.2514/2.1206
[28] Li, W., Huyse, L., Padula, S.: Robust Airfoil Optimization to Achieve Consistent Drag Reductin Over a Mach Range. In: NASA/CR-2001-211042 (August 2001)
[29] Giunta, A.A., Dudley, J.M., Narducci, R., Grossman, B., Haftka, R.T., Mason, W.H., Watson, L.T.: Noisy Aerodynamic Response and Smooth Approximations in HSCT Design. In: 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City, FL (Septemper 1994)
[30] Burman, J.; Gebart, B. R., Influence from numerical noise in the objective function for flow design optimisation, International Journal of Numerical Methods for Heat & Fluid Flow, 11, 1, 6-19 (2001) · Zbl 1012.76023 · doi:10.1108/09615530110364051
[31] Dudley, J. M.; Huang, X.; MacMillin, P. E.; Grossman, B.; Haftka, R. T.; Mason, W. H., Multidisciplinary Design Optimization of a High Speed Civil Transport, First Industry/University Symposium on High Speed Transport Vehicles (1994), Greensboro: NC A&T University, Greensboro
[32] Queipo, N. V.; Haftka, R. T.; Shyy, W.; Goel, T.; Vaidyanathan, R.; Tucker, P. K., Surrogate-Based Analysis and Optimization, Progress in Aerospace Sciences, 41, 1, 1-28 (2005) · doi:10.1016/j.paerosci.2005.02.001
[33] Forrester, A. I.J.; Keane, A. J., Recent advances in surrogate-based optimization, Progress in Aerospace Sciences, 45, 1-3, 50-79 (2009) · doi:10.1016/j.paerosci.2008.11.001
[34] Alexandrov, N. M.; Lewis, R. M., An overview of first-order model management for engineering optimization, Optimization and Engineering, 2, 4, 413-430 (2001) · Zbl 1079.90622 · doi:10.1023/A:1016042505922
[35] Alexandrov, N.M., Nielsen, E.J., Lewis, R.M., Anderson, W.K.: First-Order Model Management with Variable-Fidelity Physics Applied to Multi-Element Airfoil Optimization. In: 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Design and Optimization, AIAA Paper 2000-4886, Long Beach, CA (September 2000)
[36] Alexandrov, N.M., Lewis, R.M., Gumbert, C.R., Green, L.L., Newman, P.A.: Optimization with Variable-Fidelity Models Applied to Wing Design. In: 38th Aerospace Sciences Meeting & Exhibit, Reno, NV, AIAA Paper 2000-0841(January 2000)
[37] Robinson, T.D., Eldred, M.S., Willcox, K.E., Haimes, R.: Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping. AIAA Journal 46(11) (November 2008)
[38] Booker, A. J.; Dennis, J. E. Jr.; Frank, P. D.; Serafini, D. B.; Torczon, V.; Trosset, M. W., A rigorous framework for optimization of expensive functions by surrogates, Structural Optimization, 17, 1, 1-13 (1999) · doi:10.1007/BF01197708
[39] Lee, D.S., Gonzalez, L.F., Srinivas, K., Periaux, J.: Multi-objective robust design optimisation using hierarchical asynchronous parallel evolutionary algorithms. In: 45th AIAA Aerospace Science Meeting and Exhibit, AIAA Paper 2007-1169, Reno, Nevada, USA, January 8-11 (2007) · Zbl 1237.76124
[40] Barrett, T.R., Bressloff, N.W., Keane, A.J.: Airfoil Design and Optimization Using Multi-Fidelity Analysis and Embedded Inverse Design. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, AIAA Paper 2006-1820, Rhode Island, May 1-4 (2006)
[41] Vanderplaats, G.N.: Numerical Optimization Techniques for Engineering Design, 3rd edn. Vanderplaats Research and Development (1999) · Zbl 0613.90062
[42] Rai, M.M.: Robust optimal design with differential evolution. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper 2004-4588, Albany, New York, August 30 - September 1 (2004)
[43] Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. In: 30th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 6-9 (1992)
[44] Anderson, J. D., Modern Compressible Flow - With Historical Prespective (2003), New York: McGraw-Hill, New York
[45] Katz, J.; Plotkin, A., Low-Speed Aerodynamics (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0976.76003
[46] Anderson, J. D., Fundamentals of Aerodynamics (2007), New York: McGraw-Hill, New York
[47] Gauger, N. R.; Thevenin, D.; Janiga, G., Efficient Deterministic Approaches for Aerodynamic Shape Optimization, Optimization and Computational Fluid Dynamics, 111-145 (2008), Heidelberg: Springer, Heidelberg · Zbl 1298.76144 · doi:10.1007/978-3-540-72153-6_5
[48] Abbott, I. H.; Von Doenhoff, A. E., Theory of Wing Sections (1959), New York: Dover Publications, New York
[49] Peigin, S.; Epstein, B., Robust Optimization of 2D Airfoils Driven by Full Navier-Stokes Computations, Computers & Fluids, 33, 1175-1200 (2004) · Zbl 1103.76366 · doi:10.1016/j.compfluid.2003.11.001
[50] Sobieczky, H.; Fuji, K.; Dulikravich, G. S., Parametric Airfoils and Wings, Notes on Numerical Fluid Mechanics (1998), Vieweg: Wiesbaden, Vieweg
[51] Derksen, R. W.; Rogalsky, T., Bezier-PARSEC: An Optimized Aerofoil Parameterization for Design, Advances in Engineering Software, 41, 923-930 (2010) · Zbl 1372.76015 · doi:10.1016/j.advengsoft.2010.05.002
[52] ICEM CFD. ver. 12.1, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317 (2006)
[53] Kolda, T. G.; Lewis, R. M.; Torczon, V., Optimization by direct search: new perspectives on some classical and modern methods, SIAM Review, 45, 3, 385-482 (2003) · Zbl 1059.90146 · doi:10.1137/S003614450242889
[54] Nelder, J. A.; Mead, R., A simplex method for function minimization, Computer Journal, 7, 308-313 (1965) · Zbl 0229.65053
[55] Goldberg, D., Genetic Algorithms in Search, Optimization and Machine Learning (1989), Reading: Addison-Wesley, Reading · Zbl 0721.68056
[56] Michalewicz, Z., Genetic Algorithm + Data Structures = Evolutionary Programs (1996), Heidelberg: Springer, Heidelberg · Zbl 0841.68047
[57] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942-1948 (1995)
[58] Clerc, M.; Kennedy, J., The particle swarm - explosion, stability, and convergence in a multidimensional complex space, IEEE Transactions on Evolutionary Computation, 6, 1, 58-73 (2002) · doi:10.1109/4235.985692
[59] Storn, R.; Price, K., Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 11, 341-359 (1997) · Zbl 0888.90135 · doi:10.1023/A:1008202821328
[60] Kirkpatrick, S.; Gelatt, C. Jr; Vecchi, M., Optimization by simulated annealing, Science, 220, 4498, 671-680 (1983) · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[61] Giunta, A.A., Wojtkiewicz, S.F., Eldred, M.S.: Overview of modern design of experiments methods for computational simulations. In: 41st AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2003-0649, Reno, NV (2003)
[62] Simpson, T. W.; Peplinski, J.; Koch, P. N.; Allen, J. K., Metamodels for computer-based engineering design: survey and recommendations, Engineering with Computers, 17, 2, 129-150 (2001) · Zbl 0985.68599 · doi:10.1007/PL00007198
[63] Gunn, S.R.: Support vector machines for classification and regression. Tech. Rep., School of Electronics and Computer Science, University of Southampton (1998)
[64] Forrester, A. I.J.; Bressloff, N. W.; Keane, A. J., Optimization Using Surrogate Models and Partially Converged Computationally Fluid Dynamics Simulations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462, 2071, 2177-2204 (2006) · Zbl 1149.76656 · doi:10.1098/rspa.2006.1679
[65] Bandler, J. W.; Cheng, Q. S.; Dakroury, S. A.; Mohamed, A. S.; Bakr, M. H.; Madsen, K.; Søndergaard, J., Space mapping: the state of the art, IEEE Trans. Microwave Theory Tech., 52, 1, 337-361 (2004) · doi:10.1109/TMTT.2003.820904
[66] Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MPS-SIAM Series on Optimization (2000) · Zbl 0958.65071
[67] Rao, S. S., Engineering Optimization: Theory and Practice (1996), Chichester: Wiley, Chichester
[68] Eldred, M.S., Giunta, A.A., Collis, S.S.: Second-Order Corrections for Surrogate-Based Optimizatin with Model Hierarchies. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper 2004-4457, Albany, NY (2004)
[69] Marsden, A. L.; Wang, M.; Dennis, J. E.; Moin, P., Optimal aeroacoustic shape design using the surrogate management framework, Optimization and Engineering, 5, 235-262 (2004) · Zbl 1116.90417 · doi:10.1023/B:OPTE.0000033376.89159.65
[70] Robinson, T.D., Eldred, M.S., Willcox, K.E., Haimes, R.: Strategies for Multifidelity Optimization with Variable Dimensional Hierarchical Models. In: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2006-1819, Newport, Rhode Island, May 1-4 (2006)
[71] Robinson, T.D., Willcox, K.E., Eldren, M.S., Haimes, R.: Multifidelity Optimization for Variable-Complexity Design. In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper 2006-7114, Portsmouth, VA (September 2006)
[72] Robinson, T.D., Eldred, M.S., Willcox, K.E., Haimes, R.: Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping. AIAA Journal 46(11) (November 2008)
[73] Koziel, S.; Bandler, J. W.; Madsen, K., A space mapping framework for engineering optimization: theory and implementation, IEEE Trans. Microwave Theory Tech., 54, 10, 3721-3730 (2006) · doi:10.1109/TMTT.2006.882894
[74] Koziel, S.; Cheng, Q. S.; Bandler, J. W., Space mapping, IEEE Microwave Magazine, 9, 6, 105-122 (2008) · doi:10.1109/MMM.2008.929554
[75] Redhe, M., Nilsson, L.: Using space mapping and surrogate models to optimize vehicle crashworthiness design. In: 9th AIAA/ISSMO Multidisciplinary Analysis and Optimization Symp., AIAA Paper 2002-5536, Atlanta, GA, pp. 2002-5536 (Septemper 2002)
[76] Echeverria, D.; Hemker, P. W., Space mapping and defect correction, CMAM Int. Mathematical Journal Computational Methods in Applied Mathematics, 5, 2, 107-136 (2005) · Zbl 1071.65086
[77] Koziel, S.: Efficient Optimization of Microwave Circuits Using Shape-Preserving Response Prediction. In: IEEE MTT-S Int. Microwave Symp. Dig, Boston, MA, pp. 1569-1572 (2009)
[78] Koziel, S., Leifsson, L.: Multi-Fidelity High-Lift Aerodynamic Optimization of Single-Element Airfoils. In: Int. Conf. Engineering Optimization, Lisbon (September 6-9, 2010) · Zbl 1339.76039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.