×

A partial order on the set of prime knots with up to 11 crossings. (English) Zbl 1218.57004

J. Knot Theory Ramifications 20, No. 2, 275-303 (2011); erratum ibid. 21, No. 4, 1292001, 2 p. (2012).
For two prime knots \(K_1, K_2\) in \(S^3\), we write \(K_1\geq K_2\) if there exists a surjective homomorphism from the knot group of \(K_1\) to that of \(K_2\). This relation is a partial order on the set of prime knots and it is an open problem to determine whether there exists a surjective homomorphism between the knot groups of two given knots.
A useful criterion is given by the Alexander polynomial and more generally by the twisted Alexander polynomial. Using these criteria, two of the authors completely determined, in a previous paper, this partial order for Rolfsen’s knot table which contains 249 prime knots up to 10 crossings.
In this paper, the authors determine this partial order on the set of prime knots with up to 11 crossings which contains 801 prime knots. For this purpose, they either construct explicit surjective homomorphisms or prove the non-existence of such homomorphism by checking the divisibility of twisted Alexander polynomials and using 2-dimensional unimodular representations of knot groups over finite prime fields.

MSC:

57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M05 Fundamental group, presentations, free differential calculus
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)

References:

[1] DOI: 10.4310/CAG.2010.v18.n1.a5 · Zbl 1211.57004 · doi:10.4310/CAG.2010.v18.n1.a5
[2] Crowell R., Graduate Texts in Mathematics 57, in: Introduction to Knot Theory
[3] DOI: 10.1016/0166-8641(84)90016-6 · Zbl 0568.57005 · doi:10.1016/0166-8641(84)90016-6
[4] DOI: 10.1007/BF01458281 · Zbl 0451.57001 · doi:10.1007/BF01458281
[5] DOI: 10.1007/978-94-011-1695-4_11 · doi:10.1007/978-94-011-1695-4_11
[6] R. Kirby, Geometric Topology, AMS/IP Studies in Advanced Mathematics 2.2 (American Mathematical Society, Providence, 1997) pp. 35–473.
[7] DOI: 10.2140/agt.2005.5.1315 · Zbl 1081.57004 · doi:10.2140/agt.2005.5.1315
[8] DOI: 10.1080/10586458.2005.10128937 · Zbl 1089.57006 · doi:10.1080/10586458.2005.10128937
[9] T. Kitano and M. Suzuki, Intelligence of Low Dimensional Topology (World Scientific, 2006) pp. 173–178.
[10] DOI: 10.2140/gtm.2008.13.307 · Zbl 1137.57006 · doi:10.2140/gtm.2008.13.307
[11] DOI: 10.1007/s10114-008-6269-2 · Zbl 1153.57005 · doi:10.1007/s10114-008-6269-2
[12] DOI: 10.1007/s101140100122 · Zbl 0986.57003 · doi:10.1007/s101140100122
[13] DOI: 10.2140/gtm.2008.14.417 · Zbl 1146.57011 · doi:10.2140/gtm.2008.14.417
[14] Rolfsen D., Knots and Links · Zbl 0339.55004 · doi:10.1090/chel/346
[15] DOI: 10.1016/0040-9383(94)90013-2 · Zbl 0822.57006 · doi:10.1016/0040-9383(94)90013-2
[16] DOI: 10.1142/S0218216593000143 · Zbl 0808.57001 · doi:10.1142/S0218216593000143
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.