×

Stability analysis for Minty mixed variational inequality in reflexive Banach spaces. (English) Zbl 1218.49032

Summary: This paper is devoted to the stability analysis for a class of Minty mixed variational inequalities in reflexive Banach spaces, when both the mapping and the constraint set are perturbed. Several equivalent characterizations are given for the Minty mixed variational inequality to have a nonempty and bounded solution set. A stability result is presented for the Minty mixed variational inequality with \(\Phi\)-pseudomonotone mapping in reflexive Banach space, when both the mapping and the constraint set are perturbed by different parameters. As an application, a stability result for a generalized mixed variational inequality is also obtained. The results presented in this paper generalize and extend some known results in J. Fan and R. Zhong [Nonlinear Anal., Theory Methods Appl. 69, No. 8, A, 2566–2574 (2008; Zbl 1172.49010)] and Y. He [J. Math. Anal. Appl. 330, No. 1, 352–363 (2007; Zbl 1124.49005)].

MSC:

49K40 Sensitivity, stability, well-posedness
90C31 Sensitivity, stability, parametric optimization
49J40 Variational inequalities
Full Text: DOI

References:

[1] Fan, J.H., Zhong, R.Y.: Stability analysis for variational inequality in reflexive Banach spaces. Nonlinear Anal., Theory Methods Appl. 69, 2566–2574 (2008) · Zbl 1172.49010 · doi:10.1016/j.na.2007.08.031
[2] He, Y.R.: Stable pseudomonotone variational inequality in reflexive Banach spaces. J. Math. Anal. Appl. 330, 352–363 (2007) · Zbl 1124.49005 · doi:10.1016/j.jmaa.2006.07.063
[3] Brezis, H.: Operateurs Maximaux Monotone et Semigroups de Constractions dans les Espaces de Hilbert. North-Holland, Amsterdam (1973)
[4] Salmon, G., Strodiot, J.J., Nguyen, V.H.: A bundle method for solving variational inequalities. SIAM J. Optim. 14, 869–893 (2004) · Zbl 1064.65051 · doi:10.1137/S1052623401384096
[5] Crouzeix, J.P.: Pseudomonotone variational inequality problems: existence of solutions. Math. Program. 78, 305–314 (1997) · Zbl 0887.90167
[6] Daniilidis, A., Hadjisavvas, N.: Coercivity conditions and variational inequalities. Math. Program. 86, 433–438 (1999) · Zbl 0937.49003 · doi:10.1007/s101070050097
[7] Yao, J.-C.: Multivalued variational inequalities with K-pseudomonotone operators. J. Optim. Theory Appl. 83, 391–403 (1994) · Zbl 0812.47055 · doi:10.1007/BF02190064
[8] Yuan, G.X.Z.: KKM Theory and Application to Nonlinear Analysis. Dekker, New York (1999) · Zbl 0936.47034
[9] Minty, G.J.: On the generalization of a direct method of the calculus of variations. Bull. Am. Math. Soc. 73, 315–321 (1967) · Zbl 0157.19103 · doi:10.1090/S0002-9904-1967-11732-4
[10] Giannessi, F.: On Minty variational principle. In: New Trends in Mathematical Programming, pp. 93–99. Kluwer Academic, Boston (1998) · Zbl 0909.90253
[11] Fang, Y.P., Huang, N.J., Yao, J.-C.: Well-posedness by perturbations of mixed variational inequalities in Banach spaces. Eur. J. Oper. Res. 201, 682–692 (2010) · Zbl 1177.49018 · doi:10.1016/j.ejor.2009.04.001
[12] Crespi, G.P., Ginchev, I., Rocca, M.: Minty variational inequalities, increase along rays property and optimization. J. Optim. Theory Appl. 123, 479–496 (2004) · Zbl 1059.49010 · doi:10.1007/s10957-004-5719-y
[13] John, R.: A Note on Minty Variational Inequality and Generalized Monotonicity. Lecture Notes in Economics and Mathematical Systems, vol. 502, pp. 240–246. Springer, Berlin (2001) · Zbl 0977.49003
[14] Yang, X.M., Yang, X.Q., Teo, K.-L.: Some remarks on the Minty vector variational inequality. J. Optim. Theory Appl. 121, 193–201 (2004) · Zbl 1140.90492 · doi:10.1023/B:JOTA.0000026137.18526.7a
[15] Domokos, A.: Solution sensitivity of variational inequalities. J. Math. Anal. Appl. 230, 382–389 (1999) · Zbl 0927.49005 · doi:10.1006/jmaa.1998.6193
[16] Gowda, M.S., Pang, J.S.: Stability analysis of variational inequalities and nonlinear complementarity problems, via the mixed linear complementarity problem and degree theory. Math. Oper. Res. 19, 831–879 (1994) · Zbl 0821.90114 · doi:10.1287/moor.19.4.831
[17] Kassay, G., Kolumbán, J.: Multivalued parametric variational inequalities with {\(\alpha\)}-pseudomonotone maps. J. Optim. Theory Appl. 107, 35–50 (2000) · Zbl 0968.49010 · doi:10.1023/A:1004600631797
[18] Kyparisis, J.: Parametric variational inequalities with multivalued solution sets. Math. Oper. Res. 17, 341–364 (1992) · Zbl 0777.49008 · doi:10.1287/moor.17.2.341
[19] Yen, N.D., Lee, G.-M.: Solution sensitivity of a class of variational inequalities. J. Math. Anal. Appl. 215, 48–55 (1997) · Zbl 0906.49002 · doi:10.1006/jmaa.1997.5607
[20] Tobin, R.L.: Sensitivity analysis for variational inequalities. J. Optim. Theory Appl. 48, 191–209 (1996) · Zbl 0557.49004
[21] McLinden, L.: Stable monotone variational inequalities. Math. Program. 48, 303–338 (1990) · Zbl 0726.90093 · doi:10.1007/BF01582261
[22] Adly, S.: Stability of linear semi-coercive variational inequalities in Hilbert spaces: application to the Signorini-Fichera problem. J. Nonlinear Convex Anal. 7, 325–334 (2006) · Zbl 1130.47041
[23] Adly, S., Ernst, E., Théra, M.: Stability of the solution set of non-coercive variational inequalities. Commun. Contemp. Math. 4, 145–160 (2002) · Zbl 1012.47052 · doi:10.1142/S0219199702000579
[24] Addi, K., Adly, S., Goeleven, D., Saoud, H.: A sensitivity analysis of a class of semi-coercive variational inequalities using recession tools. J. Glob. Optim. 40, 7–27 (2008) · Zbl 1295.49018 · doi:10.1007/s10898-007-9207-4
[25] Auslender, A., Correa, R.: Primal and dual stability results for variational inequalities. Comput. Optim. Appl. 17, 117–130 (2000) · Zbl 0987.90077 · doi:10.1023/A:1026594114013
[26] Anh, L.Q., Khanh, P.Q.: On the stability of the solution sets of general multivalued vector quasiequilibrium problems. J. Optim. Theory Appl. 135, 271–284 (2007) · Zbl 1146.90516 · doi:10.1007/s10957-007-9250-9
[27] Anh, L.Q., Khanh, P.Q.: Semicontinuity of solution sets to parametric quasivariational inclusions with applications to traffic networks II: lower semicontinuities applications. Set-Valued Anal. 16, 943–960 (2008) · Zbl 1156.90443 · doi:10.1007/s11228-008-0082-z
[28] Cheng, Y.H., Zhu, D.L.: Global stability results for the weak vector variational inequality. J. Glob. Optim. 32, 543–550 (2005) · Zbl 1097.49006 · doi:10.1007/s10898-004-2692-9
[29] Gong, X.H.: Continuity of the solution set to parametric weak vector equilibrium problems. J. Optim. Theory Appl. 139, 35–46 (2008) · Zbl 1189.90195 · doi:10.1007/s10957-008-9429-8
[30] Gong, X.H., Yao, J.-C.: Lower semicontinuity of the set of efficient solutions for generalized systems. J. Optim. Theory Appl. 138, 197–205 (2008) · Zbl 1302.49018 · doi:10.1007/s10957-008-9379-1
[31] Huang, N.J., Lan, H.Y., Cho, Y.-J.: Sensitivity analysis for nonlinear generalized mixed implicit equilibrium problems with non-monotone set-valued mappings. J. Comput. Appl. Math. 196, 608–618 (2006) · Zbl 1109.47053 · doi:10.1016/j.cam.2005.10.014
[32] Huang, N.J., Li, J., Thompson, H.B.: Stability for parametric implicit vector equilibrium problems. Math. Comput. Model. 43, 1267–1274 (2006) · Zbl 1187.90286 · doi:10.1016/j.mcm.2005.06.010
[33] Li, S.J., Chen, G.Y., Teo, K.-L.: On the stability of generalized vector quasivariational inequality problems. J. Optim. Theory Appl. 113, 283–295 (2002) · Zbl 1003.47049 · doi:10.1023/A:1014830925232
[34] Panagiotopoulos, P., Stavroulakis, G.: New types of variational principles based on the notion of quasidifferentiability. Acta Mech. 94, 171–194 (1994) · Zbl 0756.73096 · doi:10.1007/BF01176649
[35] Cohen, G.: Nash equilibria: gradient and decomposition algorithms. Large Scale Syst. 12, 173–184 (1987) · Zbl 0654.90103
[36] Konnov, I.: A combined relaxation method for a class of nonlinear variational inequalities. Optimization 51, 127–143 (2002) · Zbl 1013.49004 · doi:10.1080/02331930211990
[37] Baiocchi, C., Buttazzo, G., Gastaldi, F., Tomarelli, F.: General existence theorems for unilateral problems in continuum mechanics. Arch. Ration. Mech. Anal. 100, 149–188 (1988) · Zbl 0646.73011 · doi:10.1007/BF00282202
[38] Yin, H.Y., Xu, C.X., Zhang, Z.X.: The F-complementarity problem and its equivalence with the least element problem. Acta Math. Sin. 44(4), 679–686 (2001) · Zbl 1022.90034
[39] He, Y.R.: A new projection algorithm for mixed variational inequalities. Acta Math. Sci. 27A(2), 215–220 (2007) · Zbl 1174.47382
[40] Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961) · Zbl 0093.36701 · doi:10.1007/BF01353421
[41] Zalinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River Edge (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.