×

Homoclinic orbits for a class of first-order nonperiodic asymptotically quadratic Hamiltonian systems with spectrum point zero. (English) Zbl 1218.37081

The authors consider the following first-order Hamiltonian system \[ \dot{u}(t)=\mathcal{J}H_u(t,u), t\in \mathbb{R}, \] where \(u=(y,z)\in \mathbb{R}^{2N}, \mathcal{J}\) is the standard symplectic matrix in \(\mathbb{R}^{2N}\), and \(H\in C^1(\mathbb{R} \times \mathbb{R}^{2N},\mathbb{R})\) has the form \(H(t,u)=\frac{1}{2}Lu \cdot u +W(t,u)\) with \(L\) being a \(2N\times 2N\) symmetric constant matrix, and \(W\in C^1(\mathbb{R} \times \mathbb{R}^{2N},\mathbb{R})\). The main result of the paper shows, by using two recent critical point theorems for strongly indefinite functionals [T. Bartsch and Y. Ding, Math. Nachr. 279, No. 12, 1267–1288 (2006; Zbl 1117.58007)], that if the technical working assumptions \((L_1)\), \((H_1) -(H_5)\) hold, then the considered Hamiltonian system has at least one homoclinic orbit (Theorem 1.1).

MSC:

37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces

Citations:

Zbl 1117.58007
Full Text: DOI

References:

[1] Arioli, G.; Szulkin, A., Homoclinic solutions of Hamiltonian systems with symmetry, J. Differential Equations, 158, 291-313 (1999) · Zbl 0944.37030
[2] Bartsch, T.; Ding, Y., Deformation theorems on non-metrizable vector spaces and applications to critical point theory, Math. Nachr., 279, 1-22 (2006)
[3] Chen, C.; Hu, X., Maslov index for homoclinic orbits of Hamiltonian systems, Ann. Inst. H. Poincaré Anal. Non Lineaire, 240, 589-603 (2007) · Zbl 1202.37081
[4] Coti-Zelati, V.; Ekeland, I.; Séré, E., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 228, 133-160 (1990) · Zbl 0731.34050
[5] Ding, J.; Xu, J.; Zhang, F., Homoclinic orbits of nonperiodic super quadratic Hamiltonian system, Acta Appl. Math., 110, 1353-1371 (2010) · Zbl 1192.37088
[6] Ding, Y., Variational Methods for Strongly Indefinite Problems, Interdiscip. Math. Sci., vol. 7 (2007), World Scientific · Zbl 1133.49001
[7] Ding, Y., Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal., 25, 1095-1113 (1995) · Zbl 0840.34044
[8] Ding, Y., Multiple homoclinics in a Hamiltonian system with asymptotically or super linear terms, Commun. Contemp. Math., 8, 453-480 (2006) · Zbl 1104.70013
[9] Ding, Y.; Girardi, M., Infinitely many homoclinic orbits of a Hamiltonian system with symmetry, Nonlinear Anal., 38, 391-415 (1999) · Zbl 0938.37034
[10] Ding, Y.; Jeanjean, L., Homoclinic orbits for a nonperiodic Hamiltonian system, J. Differential Equations, 237, 473-490 (2007) · Zbl 1117.37032
[11] Ding, Y.; Lee, C., Existence and exponential decay of homoclinics in a nonperiodic superquadratic Hamiltonian system, J. Differential Equations, 246, 2829-2848 (2009) · Zbl 1162.70014
[12] Ding, Y.; Li, S., Homoclinic orbits for first order Hamiltonian systems, J. Math. Anal. Appl., 189, 585-601 (1995) · Zbl 0818.34023
[13] Ding, Y.; Willem, M., Homoclinic orbits of a Hamiltonian system, Z. Angew. Math. Phys., 50, 759-778 (1999) · Zbl 0997.37041
[14] Liu, Z.; Su, J.; Weth, T., Compactness results for Schrödinger equations with asymptotically linear terms, J. Differential Equations, 231, 501-512 (2006) · Zbl 1387.35246
[15] Salvatore, A., Homoclinic orbits of a special class of nonautonomous Hamiltonian systems, Nonlinear Anal., 30, 4849-4857 (1997) · Zbl 0893.34041
[16] Szulkin, A.; Zou, W., Homoclinic orbits for asymptotically linear Hamiltonian systems, J. Funct. Anal., 187, 25-41 (2001) · Zbl 0984.37072
[17] Zhang, S., Symmetrically homoclinic orbits for symmetric Hamiltonian systems, J. Math. Anal. Appl., 247, 645-652 (2000) · Zbl 0983.37076
[18] Zhao, F.; Zhao, L.; Ding, Y., Existence and multiplicity of solutions for a non-periodic Schrödinger equation, Nonlinear Anal., 69, 3671-3678 (2008) · Zbl 1159.35431
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.