×

Persistence and imperfection of nonautonomous bifurcation patterns. (English) Zbl 1218.37035

The article deals with some bifurcation phenomena with bounded entire solutions to nonautonomous dynamical systems with basic (bifurcation) and additional (perturbation) parameters \(\lambda\) and \(\varepsilon\). In particular, the following equations are considered: the nonautonomous parabolic equation
\[ \dot u + Au = f(t,u,\lambda,\varepsilon), \]
where \(A\) is a sectorial operator in a Hilbert space \(X\), \(f(t,u,\lambda,\varepsilon)\) a nonlinearity; further, the Carathéodory differential equation
\[ \dot x = f(t,x,\lambda,\varepsilon); \]
and the difference equations of type
\[ x_{k+1} = f_k(x_k,\lambda,\varepsilon). \]
For all these equations the problem about bounded solutions in a neighborhood of a bifurcation point is reduced (of course under special hypotheses) to the analysis of an auxiliary equation, and this analysis allows the author to give the picture for the behavior of bounded solutions under perturbations of both parameters. References in the article are sufficiently complete. However, the author ignores or does not know numerous investigations by Krasnosel’skiĭ and his colleagues about bifurcation and perturbated bifurcation of almost periodic solutions for ordinary and parabolic differential equations. Abstract bifurcation and perturbated bifurcation problems are also considered in the monograph by M. A. Krasnosel’skiĭ, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskij and V. Ya. Stetsenko [Approximate solution of operator equations. Groningen: Wolters-Noordhoff Publishing (1972; Zbl 0231.41024)].

MSC:

37C60 Nonautonomous smooth dynamical systems
34C23 Bifurcation theory for ordinary differential equations
34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
47J15 Abstract bifurcation theory involving nonlinear operators

Citations:

Zbl 0231.41024
Full Text: DOI

References:

[1] Arnold, L., Random Dynamical Systems, Springer Monogr. Math. (1998), Springer: Springer Berlin · Zbl 0906.34001
[2] Aulbach, B.; Siegmund, S., The dichotomy spectrum for noninvertible systems of linear difference equations, J. Difference Equ. Appl., 7, 6, 895-913 (2001) · Zbl 1001.39003
[3] Aulbach, B.; Wanner, T., Integral manifolds for Carathéodory type differential equations in Banach spaces, (Aulbach, B.; Colonius, F., Six Lectures on Dynamical Systems (1996), World Scientific: World Scientific Singapore), 45-119 · Zbl 1016.34048
[4] Baskakov, A. G., Invertibility and the Fredholm property of difference operators, Math. Notes, 67, 6, 690-698 (2000) · Zbl 0979.47019
[5] Beyn, W.-J.; Kleinkauf, J.-M., The numerical computation of homoclinic orbits for maps, SIAM J. Numer. Anal., 34, 3, 1209-1236 (1997) · Zbl 0876.58020
[6] Bishnani, Z.; Mackey, R. S., Safety criteria for aperiodically forced systems, Dyn. Syst., 18, 2, 107-129 (2003) · Zbl 1151.37310
[7] Blazquez, C. M., Transverse homoclinic orbits in periodically perturbed parabolic equations, Nonlinear Anal., 10, 11, 1277-1291 (1986) · Zbl 0612.58040
[8] Caradus, S. R., Generalized Inverses and Operator Theory, Queenʼs Papers in Pure and Appl. Math., vol. 50 (1978), Queenʼs University: Queenʼs University Kingston, ON · Zbl 0434.47003
[9] Chow, S.-N.; Hale, J. K.; Mallet-Paret, J., An example of bifurcations to homoclinic orbits, J. Differential Equations, 37, 351-373 (1980) · Zbl 0439.34035
[10] Colonius, F.; Kliemann, W., The Dynamics of Control (1999), Birkhäuser: Birkhäuser Basel, Berlin, Boston · Zbl 0718.34091
[11] Crauel, H.; Flandoli, F., Additive noise destroys a pitchfork bifurcation, J. Dynam. Differential Equations, 10, 2, 259-274 (1998) · Zbl 0907.34042
[12] Crauel, H.; Imkeller, P.; Steinkamp, M., Bifurcations of one-dimensional stochastic differential equations, (Crauel, H., Stochastic Dynamics (1999), Springer: Springer New York), 27-47 · Zbl 0949.60066
[13] Di Giorgio, D.; Lunardi, A., Fredholm properties of \(L u = u^\prime - A(t) u\) for paths of sectorial operators, Proc. Roy. Soc. Edinburgh Sect. A, 135, 1, 39-59 (2005) · Zbl 1066.34061
[14] Golubitsky, M.; Schaeffer, D., A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math., 32, 21-98 (1979) · Zbl 0409.58007
[15] Hale, J. K.; Scheurle, J., Smoothness of bounded solutions of nonlinear evolution equations, J. Differential Equations, 56, 142-163 (1985) · Zbl 0505.34029
[16] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., vol. 840 (1981), Springer: Springer Berlin · Zbl 0456.35001
[17] Kielhöfer, H., Bifurcation Theory: An Introduction with Applications to PDEs, Appl. Math. Sci., vol. 156 (2004), Springer: Springer New York · Zbl 1032.35001
[18] Kloeden, P. E., Pullback attractors for nonautonomous semidynamical systems, Stoch. Dyn., 3, 1, 101-112 (2003) · Zbl 1029.37010
[19] Kloeden, P. E.; Siegmund, S., Bifurcations and continuous transitions of attractors in autonomous and nonautonomous systems, Internat. J. Bifur. Chaos, 5, 2, 1-21 (2005) · Zbl 1079.34041
[20] Knobloch, J., Linʼs method for discrete dynamical systems, J. Difference Equ. Appl., 6, 577-623 (2000) · Zbl 0984.39011
[21] Kurzweil, J., Ordinary Differential Equations, Stud. Appl. Math., vol. 13 (1986), Elsevier: Elsevier Amsterdam · Zbl 0619.26006
[22] Kwek, K.-H.; Zhang, W., Exponential dichotomies and Fredholm operators for parabolic equations, Math. Comput. Modelling, 35, 11-12, 1245-1259 (2002) · Zbl 1072.35535
[23] Leiva, H., Dynamical spectrum for scalar parabolic equations, Appl. Anal., 76, 1-2, 9-28 (2000) · Zbl 1026.35089
[24] Langa, J. A.; Robinson, J. C.; Suárez, A., Bifurcations in non-autonomous scalar equations, J. Differential Equations, 221, 1-35 (2006) · Zbl 1096.34026
[25] Latushkin, Y.; Tomilov, Y., Fredholm differential operators with unbounded coefficients, J. Differential Equations, 208, 2, 388-429 (2005) · Zbl 1061.47039
[26] Lin, X.-B., Exponential dichotomies and homoclinic orbits in functional differential equations, J. Differential Equations, 63, 227-254 (1986) · Zbl 0589.34055
[27] Liu, P.; Shi, J.; Wang, Y., Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251, 573-600 (2007) · Zbl 1139.47042
[28] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progr. Nonlinear Differential Equations Appl., vol. 16 (1995), Birkhäuser: Birkhäuser Basel · Zbl 0816.35001
[29] Miklavčič, M., Stability for semilinear parabolic equations with noninvertible linear operator, Pacific J. Math., 118, 1, 199-214 (1985) · Zbl 0559.35037
[30] Palmer, K. J., Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55, 225-256 (1984) · Zbl 0508.58035
[31] Palmer, K. J., Exponential dichotomies and Fredholm operators, Proc. Amer. Math. Soc., 104, 1, 149-156 (1988) · Zbl 0675.34006
[32] Palmer, K. J., Exponential dichotomies, the shadowing lemma and transversal homoclinic points, (Kirchgraber, U.; Walther, H.-O., Dynamics Reported, vol. 1 (1988), B.G. Teubner/John Wiley and Sons: B.G. Teubner/John Wiley and Sons Stuttgart/Chichester), 265-306 · Zbl 0676.58025
[33] Pötzsche, C., Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach, Discrete Contin. Dyn. Syst. Ser. B, 14, 2, 739-776 (2010) · Zbl 1215.37017
[34] Pötzsche, C., Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lecture Notes in Math., vol. 2002 (2010), Springer: Springer Berlin · Zbl 1247.37003
[35] C. Pötzsche, Nonautonomous bifurcation of bounded solutions: Crossing curve situations, Stoch. Dyn. (2011), in press.; C. Pötzsche, Nonautonomous bifurcation of bounded solutions: Crossing curve situations, Stoch. Dyn. (2011), in press.
[36] Pötzsche, C., Nonautonomous continuation of bounded solutions, Comm. Pure Appl. Anal., 10, 3, 937-961 (2011) · Zbl 1237.39005
[37] Rasmussen, M., Attractivity and Bifurcation for Nonautonomous Dynamical Systems, Lecture Notes in Math., vol. 1907 (2007), Springer: Springer Berlin · Zbl 1131.37001
[38] Rasmussen, M., Nonautonomous bifurcation patterns for one-dimensional differential equations, J. Differential Equations, 234, 267-288 (2007) · Zbl 1125.34032
[39] Sacker, R. J.; Sell, G. R., A spectral theory for linear differential systems, J. Differential Equations, 27, 320-358 (1978) · Zbl 0372.34027
[40] Sell, G. R.; You, Y., Dynamics of Evolutionary Equations, Appl. Math. Sci., vol. 143 (2002), Springer: Springer Berlin · Zbl 1254.37002
[41] Shi, J., Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169, 494-531 (1999) · Zbl 0949.47050
[42] Siegmund, S., Dichotomy spectrum for nonautonomous differential equations, J. Dynam. Differential Equations, 14, 1, 243-258 (2002) · Zbl 0998.34045
[43] Zeidler, E., Nonlinear Functional Analysis and Its Applications I (Fixed-Points Theorems) (1993), Springer: Springer Berlin · Zbl 0794.47033
[44] Zhang, W., The Fredholm alternative and exponential dichotomies for parabolic equations, J. Math. Anal. Appl., 191, 180-201 (1995) · Zbl 0832.34050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.