×

Realization theory for rational systems: minimal rational realizations. (English) Zbl 1217.93040

Summary: The study of realizations of response maps is a topic of control and system theory. Realization theory is used in system identification and control synthesis.
A minimal rational realization of a given response map \(p\) is a rational realization of \(p\) such that the dimension of its state space equals the transcendence degree of the observation field of \(p\). We relate minimality of rational realizations with their rational observability, algebraic controllability and canonicity. We show that the existence of a minimal rational realization is implied by the existence of a rational realization. We also specify the relation between birational equivalence of rational realizations and the properties of being canonical and minimal. Furthermore, we briefly discuss the procedures for checking various properties of rational realizations.

MSC:

93B20 Minimal systems representations
93B15 Realizations from input-output data
93B27 Geometric methods
93C10 Nonlinear systems in control theory
93B25 Algebraic methods
93B30 System identification
93B05 Controllability
93B50 Synthesis problems
Full Text: DOI

References:

[1] Baillieul, J.: Controllability and observability of polynomial dynamical systems. Nonlinear Anal., Theory, Methods Appl. 5(5), 543–552 (1981) · Zbl 0463.93021 · doi:10.1016/0362-546X(81)90102-4
[2] Bartosiewicz, Z.: A new setting for polynomial continuous-time systems, and a realization theorem. IMA J. Math. Control Inf. 2, 71–80 (1985) · Zbl 0637.93013 · doi:10.1093/imamci/2.1.71
[3] Bartosiewicz, Z.: Realizations of polynomial systems. In: Fliess, M., Hazenwinkel, M. (eds.) Algebraic and Geometric Methods in Nonlinear Control Theory, pp. 45–54. Reidel, Dordrecht (1986)
[4] Bartosiewicz, Z.: Rational systems and observation fields. Syst. Control Lett. 9, 379–386 (1987) · Zbl 0636.93040 · doi:10.1016/0167-6911(87)90066-1
[5] Bartosiewicz, Z.: Minimal polynomial realizations. Math. Control Signals Syst. 1, 227–237 (1988) · Zbl 0671.93005 · doi:10.1007/BF02551285
[6] Becker, T., Weispfenning, V.: Gröbner Bases: A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics. Springer, Berlin (1993) · Zbl 0772.13010
[7] Bourbaki, N.: Algebra II, Chapters 4–7. Elements of Mathematics. Springer, Berlin (1990) · Zbl 0719.12001
[8] Byrnes, C.I., Falb, P.L.: Applications of algebraic geometry in system theory. Am. J. Math. 101(2), 337–363 (1979) · Zbl 0436.93013 · doi:10.2307/2373982
[9] Cohn, P.M.: Algebra, vol. 2. Wiley, New York (1977)
[10] Cox, D.A., Little, J.B., O’Shea, D.B.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185. Springer, Berlin (1998) · Zbl 0920.13026
[11] Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer, New York (2007) · Zbl 1118.13001
[12] Falb, P.: Methods of Algebraic Geometry in Control Theory: Part 1, Scalar Linear Systems and Affine Algebraic Geometry. Birkhäuser, Boston (1990) · Zbl 0805.93009
[13] Falb, P.: Methods of Algebraic Geometry in Control Theory: Part 2, Multivariable Linear Systems and Projective Algebraic Geometry. Birkhäuser, Boston (1999) · Zbl 0931.93002
[14] Fliess, M.: Automatique et corps differentiels. Forum Math. 1, 227–238 (1989) · Zbl 0701.93048 · doi:10.1515/form.1989.1.227
[15] Fliess, M., Glad, S.T.: An algebraic approach to linear and nonlinear control. In: Trentelman, H.L., Willems, J.C. (eds.) Essays on Control: Perspectives in the Theory and its Applications, pp. 223–267. Birkhäuser, Boston (1993) · Zbl 0838.93021
[16] Forsman, K.: Constructive commutative algebra in nonlinear control theory. Ph.D. thesis, Linköping University, Sweden (1991)
[17] Glad, S.T.: Differential algebraic modelling of nonlinear systems. In: Kaashoek, M.A., Ran, A.C.M., van Schuppen, J.H. (eds.) Realization and Modelling in System Theory–Proc. International Symposium MTNS-89, vol. 1, pp. 97–105. Birkhäuser, Boston (1990)
[18] Grabmeier, J., Kaltofen, E., Weispfenning, V. (eds.): Computer Algebra Handbook. Springer, Berlin (2003) · Zbl 1017.68162
[19] Heck, A.: Introduction to Maple, 2nd edn. Springer, New York (1996) · Zbl 0861.65001
[20] Hermann, R.: Algebro-Geometric and Lie-Theoretic Techniques in Systems Theory, Part A. Interdisciplinary Mathematics, vol. XIII. Math. Sci. Press, Brookline (1977) · Zbl 0362.93002
[21] Jakubczyk, B.: Existence and uniqueness of realizations of nonlinear systems. SIAM J. Control Optim. 18(4), 455–471 (July 1980) · Zbl 0447.93012 · doi:10.1137/0318034
[22] Jakubczyk, B.: Realization theory for nonlinear systems; three approaches. In: Fliess, M., Hazenwinkel, M. (eds.) Algebraic and Geometric Methods in Nonlinear Control Theory, pp. 3–31. Reidel, Dordrecht (1986)
[23] Kaplansky, I.: An Introduction to Differential Algebra. Publications de l’Institut de Mathématique de l’Université de Nancago. Hermann, Paris (1957)
[24] Klipp, E., Herg, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice: Concepts, Implementation and Application. Wiley-VCH, Weinheim (2005)
[25] Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic, New York (1973) · Zbl 0264.12102
[26] Lang, S.: Algebra. Addison-Wesley, Reading (1965)
[27] Müller-Quade, J., Steinwandt, R.: Basic algorithms for rational function fields. J. Symb. Comput. 27, 143–170 (1999) · Zbl 0935.11046 · doi:10.1006/jsco.1998.0246
[28] Müller-Quade, J., Steinwandt, R.: Gröbner bases applied to finitely generated field extensions. J. Symb. Comput. 30, 469–490 (2000) · Zbl 0997.12005 · doi:10.1006/jsco.1999.0417
[29] Němcová, J., van Schuppen, J.H.: Realization theory for rational systems: The existence of rational realizations (submitted) · Zbl 1201.93025
[30] Palais, R.S.: Real Algebraic Differential Topology, Part I. Publish or Perish, Houston (1981) · Zbl 0477.57002
[31] Ritt, J.F.: Differential algebra. American Mathematical Society Colloquium Publ., vol. 33. American Mathematical Society, Providence (1950) · Zbl 0037.18402
[32] Sontag, E.D.: Polynomial Response Maps. Lecture Notes in Control and Information Sciences, vol. 13. Springer, Berlin (1979) · Zbl 0413.93004
[33] Sontag, E.D.: Spaces of observables in nonlinear control. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2, pp. 1532–1545 (1995) · Zbl 0841.93003
[34] Sussmann, H.J.: Minimal realizations of nonlinear systems. In: Mayne, D., Brockett, R. (eds.) Geometric Methods in System Theory. Reidel, Dordrecht (1973) · Zbl 0291.93007
[35] Sussmann, H.J.: Existence and uniqueness of minimal realizations of nonlinear systems. Math. Syst. Theory 10, 263–284 (1977) · Zbl 0354.93017 · doi:10.1007/BF01683278
[36] Wang, Y., Sontag, E.D.: Algebraic differential equations and rational control systems. SIAM J. Control Optim. 30(5), 1126–1149 (1992) · Zbl 0762.93015 · doi:10.1137/0330060
[37] Wang, Y., Sontag, E.D.: Orders of input/output differential equations and state-space dimensions. SIAM J. Control Optim. 33(4), 1102–1126 (1995) · Zbl 0830.93015 · doi:10.1137/S0363012993246828
[38] Winter, D.J.: The Structure of Fields. Springer, New York (1974) · Zbl 0292.12101
[39] Zariski, O., Samuel, P.: Commutative Algebra I, II. Springer, New York (1958) · Zbl 0081.26501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.