×

Complete order amenability of the Fourier algebra. (English) Zbl 1217.43001

The authors define complete order amenability and first-order cohomology groups for quantized Banach ordered algebras. Let \(G\) be a locally compact group. Then the Fourier algebra \(A(G)\) is a quantized Banach ordered algebra. It is proved that \(A(G)\) is complete order amenable if and only if \(A(G)\) is operator amenable. The authors also show that all complete order derivations from \(A(G)\) to any dual Banach completely ordered \(A(G)\)-bimodule are inner if and only if \(A(G)\) is operator amenable.

MSC:

43A07 Means on groups, semigroups, etc.; amenable groups
22D15 Group algebras of locally compact groups
Full Text: DOI

References:

[1] W. Arendt, J. de Cannière, Order isomorphisms of Fourier algebras, J. Funct. Anal., 50 (1983), 1–7. · Zbl 0506.43001 · doi:10.1016/0022-1236(83)90057-5
[2] D. P. Blecher, V. I. Paulsen, Tensor product of operator spaces, J. Funct. Anal., 99 (1991), 262–292. · Zbl 0786.46056 · doi:10.1016/0022-1236(91)90042-4
[3] M. D. Choi, E. G. Effros, Injectivity and operator spaces, J. Funct. Anal., 24(2) (1977), 156–209. · Zbl 0341.46049 · doi:10.1016/0022-1236(77)90052-0
[4] H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000. · Zbl 0981.46043
[5] Y. Dermenjian, J. Saint-Raymond, Product tensorial de deux cones convexes saillants. Seminaire Choquet, 9e Anne’e, 20 (1970). · Zbl 0222.52002
[6] E. G. Effros, Advances in quantized functional analysis. In Proceedings of the ICM, Berkeley, 1986, pp. 906–916, Amer. Math. Soc., Providence, RI, 1987.
[7] E. G. Effros, Z.-J. Ruan, On approximation properties for operator spaces, Internat. J. Math., 1(2) (1990), 163–187. · Zbl 0747.46014 · doi:10.1142/S0129167X90000113
[8] E. G. Effros, Z. J. Ruan, Operator Spaces, London Math. Soc. Monographs, Clarendon Press, Oxford, 2000.
[9] P. Eymard, L’algèbra de Fourier d’un groupe localment compact, Bull. Soc. Math. France, 92 (1964), 181–236. · Zbl 0169.46403
[10] J. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, 1995. · Zbl 0857.43001
[11] B. E. Forrest, V. Runde, Amenability and weak amenability of the Fourier algebra, Math. Z., 250 (2005), 731–744. · Zbl 1080.22002 · doi:10.1007/s00209-005-0772-2
[12] B. E. Forrest, P. J. Wood, Cohomology and the operator space structure of the Fourier algebra and its second dual, Indiana Univ. Math. J., 50 (2001), 1217–1240. · Zbl 1037.43005 · doi:10.1512/iumj.2001.50.1835
[13] U. Haagerup, Injectivity and decomposition of completely bounded maps, unpublished notes. · Zbl 0591.46050
[14] B. E. Johnson, Cohomology of Banach algebras, Memoirs Amer. Math. Soc., 127 (1972).
[15] H. Leptin, Sur lalg’ebre de Fourier dun groupe localement compact, C. R. Acad. Sci. Paris, Ser. A., 266 (1968), 1180–1182. · Zbl 0169.46501
[16] V. Losert, On tensor product of Fourier algebras, Arch. Math (Basel), 43 (1984), 370–372. · Zbl 0587.43001 · doi:10.1007/BF01196662
[17] A. Paterson, Amenability, Amer. Math. Soc. Monographs 29, Providence, 1988.
[18] V. Paulsen, Completely bounded maps on C*-algebras and invariant operator rings, Proc. Amer. Math. Soc., 86(1) (1982), 91–96. · Zbl 0554.46028
[19] G. Pisier, Introduction to Operator Space Theory, London Math. Soc. Lecture Note Series 294, Cambridge University Press, Cambridge, 2003. · Zbl 1093.46001
[20] J. P. Pier, Amenable Banach Algebras, Longman Publishing Group, New York, 1988. · Zbl 0676.46036
[21] J. P. Pier, Amenable Locally Compact Groups, Wiley-Interscince, New York, 1984. · Zbl 0597.43001
[22] L. Bing-Ren, Introduction to Operator Algebras, World Scientific, Singapore, 1972.
[23] Z. J. Ruan, The operator amenability of A(G), Amer. J. Math., 117 (1995), 1449–1474. · Zbl 0842.43004 · doi:10.2307/2375026
[24] V. Runde, Lectures on Amenability, Lecture Notes in Math. 1774, Speringer, Berlin, 2002. · Zbl 0999.46022
[25] W. J. Schreiner, Matrix regular operator spaces, J. Funct. Anal., 152 (1997), 136–175. · Zbl 0898.46017 · doi:10.1006/jfan.1997.3160
[26] H. H. Schaefer, Banach Lattices and Positive Operators, Springer-Verlag, Berlin, 1974. · Zbl 0296.47023
[27] G. Wittstock, What are operator spaces. http://www.math.uni-sb.de/ag /wittstock/projekt2001.html . · Zbl 0228.46003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.