×

Semi-simple extension of the (Super) Poincaré algebra. (English) Zbl 1216.81088

Summary: A semi-simple tensor extension of the Poincaré algebra is proposed for the arbitrary dimensions \(D\). It is established that this extension is a direct sum of the \(D\)-dimensional Lorentz algebra so(\(D - 1\), 1) and \(D\)-dimensional anti-de Sitter (AdS) algebra so(\(D - 1\), 2). A supersymmetric also semi-simple generalization of this extension is constructed in the \(D=4\) dimensions. It is shown that this generalization is a direct sum of the 4-dimensional Lorentz algebra so(3, 1) and orthosymplectic algebra osp(1, 4) (super-AdS algebra).

MSC:

81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81Q60 Supersymmetry and quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
22E70 Applications of Lie groups to the sciences; explicit representations

References:

[1] A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Gauge field geometry from complex and harmonic analyticities-I: Kähler and self-dual Yang-Mills cases,” Annals of Physics, vol. 185, no. 1, pp. 1-21, 1988. · Zbl 0643.53066 · doi:10.1016/0003-4916(88)90256-4
[2] A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Gauge field geometry from complex and harmonic analyticities-II: hyper-Kähler case,” Annals of Physics, vol. 185, no. 1, pp. 22-45, 1988. · Zbl 0643.53067 · doi:10.1016/0003-4916(88)90257-6
[3] D. Cangemi and R. Jackiw, “Gauge-invariant formulations of lineal gravities,” Physical Review Letters, vol. 69, no. 2, pp. 233-236, 1992. · Zbl 0968.81546 · doi:10.1103/PhysRevLett.69.233
[4] D. V. Soroka and V. A. Soroka, “Tensor extension of the Poincaré algebra,” Physics Letters B, vol. 607, no. 3-4, pp. 302-305, 2005. · Zbl 1247.81165 · doi:10.1016/j.physletb.2004.12.075
[5] S. A. Duplij, D. V. Soroka, and V. A. Soroka, “Fermionic generalization of lineal gravity in centrally extended formulation,” The Journal of Kharkov National University, Physical Series, Nuclei, Particles, Fields, vol. 664, no. 2/27, pp. 12-16, 2005. · Zbl 1186.83119
[6] S. A. Duplij, D. V. Soroka, and V. A. Soroka, “Special fermionic generalization of lineal gravity,” Journal of Zhejiang University: Science A, vol. 7, no. 4, pp. 629-632, 2006. · Zbl 1186.83119 · doi:10.1631/jzus.2006.A0629
[7] S. Bonanos and J. Gomis, “A note on the Chevalley-Eilenberg cohomology for the Galilei and Poincaré algebras,” Journal of Physics A, vol. 42, no. 14, Article ID 145206, 10 pages, 2009. · Zbl 1162.81021 · doi:10.1088/1751-8113/42/14/145206
[8] D. V. Soroka and V. A. Soroka, “Multiplet with components of different masses,” Problems of Atomic Science and Technology, vol. 3, no. 1, pp. 76-78, 2007.
[9] H. S. Snyder, “Quantized space-time,” Physical Review, vol. 71, no. 1, pp. 38-41, 1947. · Zbl 0041.33118 · doi:10.1103/PhysRev.72.68
[10] C. N. Yang, “On quantized space-time,” Physical Review, vol. 72, no. 9, p. 874, 1947. · Zbl 0029.18407 · doi:10.1103/PhysRev.72.874
[11] V. V. Khruschev and A. N. Leznov, “Relativistically invariant Lie algebras for kinematic observables in quantum space-time,” Gravity Cosmology, vol. 9, no. 3, pp. 159-162, 2003. · Zbl 1057.81528
[12] A. Connes, “Non-commutative differential geometry,” Publications Mathématiques de L’IHÉS, vol. 62, no. 1, pp. 41-144, 1985. · Zbl 0592.46056 · doi:10.1007/BF02698807
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.