×

Pseudodifferential calculus on a singular foliation. (English) Zbl 1216.53029

In [J. Reine Angew. Math. 626, 1–37 (2009; Zbl 1161.53020)], the authors have defined the holonomy groupoid of any singular foliation \({\mathcal F}\) on a smooth manifold \(M\), the convolution algebra of “smooth compactly supported” functions on this groupoid and the full and reduced \( C^*\)-algebra of the foliation. In the present paper, they construct the longitudinal pseudodifferential calculus for these foliations. The longitudinal differential operators are generated by vector fields along the foliation, whereas the pseudodifferential operators are obtained as images of distributions on bi-submersions with “pseudo-differential singularities” along a bisection. This construction is presented in the third section, where it is also shown that pseudodifferential operators have a principal symbol which is a homogeneous function on the subset of non-zero elements of “the cotangent space” \({\mathcal F}^*\) and that they form a \(\ast\)-algebra. Then, they show that the longitudinal pseudodifferential calculus has the classical ellipticity properties and that it allows for the Laplacian of a singular foliation to be realized as a self adjoint element of \(B (L^{2}(M))\). Several definitions from the previous paper, necessary for the undertsanding of this construction, are recalled. Interesting examples and outlines for future studies are also presented.

MSC:

53C12 Foliations (differential geometric aspects)
57R30 Foliations in differential topology; geometric theory
47G30 Pseudodifferential operators
46L87 Noncommutative differential geometry

Citations:

Zbl 1161.53020

References:

[1] I. Androulidakis and G. Skandalis, The holonomy groupoid of a singular foliation. J. Reine Angew. Math. 626 (2009), 1-37. · Zbl 1161.53020 · doi:10.1515/CRELLE.2009.001
[2] S. Baaj, Multiplicateurs non bornés. Thèse, Univ. P. et M.Curie, Paris 1980.
[3] S. Baaj and P. Julg, Théorie bivariante de Kasparov et opérateurs non bornés dans les C -modules hilbertiens. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 875-878. · Zbl 0551.46041
[4] B. Bigonnet et J. Pradines, Graphe d’un feuilletage singulier, C. R. Acad. Sci. Paris Sér. I Math. 300 (1985), 439-442. · Zbl 0581.57013
[5] A. Connes, Sur la théorie non commutative de l’intégration. In Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, 1978), Lecture Notes in Math. 725, Springer-Verlag, Berlin 1979, 19-143. · Zbl 0412.46053
[6] A. Connes, A survey of foliations and operator algebras. In Operator algebras and appli- cations , Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math. 38, Amer. Math. Soc., Providence, R.I., 1982, 521-628. · Zbl 0531.57023
[7] C. Debord, Local integration of Lie algebroids. In Lie algebroids and related topics in differential geometry (Warsaw, 2000), Banach Center Publ. 54, Polish Acad. Sci., Warsaw 2001, 21-33. · Zbl 1007.22008
[8] C. Debord, Holonomy groupoids of singular foliations. J. Differential Geom. 58 (2001), 467-500. · Zbl 1034.58017
[9] T. Fack and G. Skandalis, Sur les représentations et idéaux de la C -algèbre d’un feuil- letage. J. Operator Theory 8 (1982), 95-129. · Zbl 0493.46051
[10] M. Khoshkam and G. Skandalis, Regular representation of groupoid C -algebras and applications to inverse semigroups. J. Reine Angew. Math. 546 (2002), 47-72. · Zbl 1029.46082 · doi:10.1515/crll.2002.045
[11] E. C. Lance, Hilbert C -modules. London Math. Soc. Lecture Note Ser. 210, Cambridge University Press, Cambridge 1995. · Zbl 0822.46080
[12] B. Monthubert and F. Pierrot, Indice analytique et groupoïdes de Lie. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 193-198. · Zbl 0955.22004 · doi:10.1016/S0764-4442(97)84598-3
[13] V. Nistor, A. Weinstein, and P. Xu, Pseudodifferential operators on differential groupoids. Pacific J. Math. 189 (1999), 117-152. · Zbl 0940.58014 · doi:10.2140/pjm.1999.189.117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.