×

Global attractivity of a generalized Lotka-Volterra competition model. (English) Zbl 1216.34082

Summary: Based on the generalized logistic model, we propose and study the global attractivity of the following generalized Lotka-Volterra competition model with distributed delays
\[ \begin{aligned} \dot{x}_1(t) &= r_1 x_1(t) \left (1-\left (\frac{x_1(t)}{K_1}\right )^{\theta_1} - \alpha_{12} \int_{-\infty}^{t} \frac{x_2(s)}{K_1}\,dH_2(t-s) \right ), \\ \dot{x}_2(t) &= r_2 x_2(t)\left (1-\alpha_{21} \int_{-\infty}^{t} \frac{x_1(s)}{K_2} \,dH_1(t-s)-\left (\frac{x_2(t)}{K_2} \right )^{\theta_2} \right), \end{aligned} \]
where all the constants are positive and \(H_i:[0,\infty) \rightarrow \mathbb R\) is a non-increasing function of bounded variation with \(\int_{0}^{\infty}\,dH_i(s) = -1\) \((i = 1, 2)\). Suppose that \(K_{1} > \alpha_{12} K_{2}\) and \(K_{2} > \alpha_{21} K_{1}\). First, we completely describe the structure of equilibria. The system has at least one positive equilibrium. Roughly speaking, the system has a unique positive equilibrium if \(\max \{ \theta_{1} , \theta_{2} \} \geq 1\) and, otherwise, it has at most three positive equilibria. Then, using the iterative method, we show that the system is globally attractive if it has a unique positive equilibrium.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K20 Stability theory of functional-differential equations
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Ayala F.J., Gilpin M.E., Ehrenfeld J.G.: Competition between species: theoretical models and experimental tests. Theor. Popul. Biol. 4, 331–356 (1973) · doi:10.1016/0040-5809(73)90014-2
[2] Buis R.: On the generalization of the logistic law of growth. Acta Biotheor. 39, 185–195 (1991) · doi:10.1007/BF00114174
[3] Chen Y.: New results on positive periodic solutions of a periodic integro-differential competition system. Appl. Math. Comput. 153, 557–565 (2004) · Zbl 1051.45004 · doi:10.1016/S0096-3003(03)00654-4
[4] Cui J.: Global stability in Gilpin–Ayala competitive model with time delays. J. Xinjiang Univ. Nat. Sci. 14, 1–5 (1997) · Zbl 1056.34523
[5] Cushing J.M.: Integrodifferential Equations and Delay Models in Population Dynamics. Springer-Verlag, Heidelberg (1977) · Zbl 0363.92014
[6] Fan M., Wang K.: Global periodic solutions of a generalized n-species Gilpin–Ayala competition model. Comput. Math. Appl. 40, 1141–1151 (2000) · Zbl 0954.92027 · doi:10.1016/S0898-1221(00)00228-5
[7] Gilpin M.E., Ayala F.J.: Global models of growth and competition. Proc. Nat. Acad. Sci. USA. 70, 3590–3593 (1973) · Zbl 0272.92016 · doi:10.1073/pnas.70.12.3590
[8] Goh B.S., Agnew T.T.: Stability in Gilpin and Ayala’s models of competition. J. Math. Biol. 4, 275–279 (1977) · Zbl 0379.92017 · doi:10.1007/BF00280977
[9] Gopalsamy K.: Time lags and global stability in two-species competition. Bull. Math. Biol. 42, 729–737 (1980) · Zbl 0453.92014
[10] Gopalsamy K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht (1992) · Zbl 0752.34039
[11] Gopalsamy K., Weng P.: Global attractivity in a competition system with feedback controls. Comput. Math. Appl. 45, 665–676 (2003) · Zbl 1059.93111 · doi:10.1016/S0898-1221(03)00026-9
[12] Hale J.: Theory of Functional Differential Equations. Springer-Verlag, Heidelberg (1977) · Zbl 0352.34001
[13] Jukić D., Scitovski R.: The existence of optimal parameters of the generalized logistic function. Appl. Math. Comput. 77, 281–294 (1996) · Zbl 0853.65151 · doi:10.1016/S0096-3003(95)00251-0
[14] Kuang Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, New York (1993) · Zbl 0777.34002
[15] Lu Z., Wang W.: Global stability for two-species Lotka–Volterra systems with delay. J. Math. Anal. Appl. 208, 277–280 (1997) · Zbl 0874.34060 · doi:10.1006/jmaa.1997.5301
[16] MacDonald N.: Time Lags in Biological Models. Springer-Verlag, Heidelberg (1978) · Zbl 0403.92020
[17] Montes de Oca F., Zeeman M.L.: Extinction in nonautonomous competitive Lotka–Volterra systems. Proc. Am. Math. Soc. 124, 3677–3687 (1996) · Zbl 0866.34029 · doi:10.1090/S0002-9939-96-03355-2
[18] Mueller, L.D.: Growth modelling of Drosophila, Ph.D Dissertation, University of California, Davis (1979)
[19] Nelder J.A.: The fitting of a generalization of the logistic curve. Biometrics 17, 89–110 (1961) · Zbl 0099.14303 · doi:10.2307/2527498
[20] Rosen G.: Time delays produced by essential nonlinearity in population growth models. Bull. Math. Biol. 49, 253–255 (1987) · Zbl 0614.92015
[21] Smith H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence (1995) · Zbl 0821.34003
[22] Zhou K.R., Lei J.Z.: Global stability analysis of the Gilpin–Ayala competition model. Sichuan Daxue Xuebao 24, 361–366 (1987) (in Chinese) · Zbl 0643.34036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.