×

On special forms of holomorphic automorphisms of domains in complex two-space. (English) Zbl 1216.32013

The purpose of the paper is to give a geometric criterion which guarantees that the automorphism groups of certain domains \(\Omega \subset\mathbb C^2\) only contain maps whose components each depend on only one variable and in at least one variable this dependence is the identity. There are two versions of this, one for real analytic boundary and one for domains with Levi-flat boundary. First for a domain \(\Omega\subset\mathbb C^2\) with real analytic boundary, let \(T_0^{\mathbb C}\) denote its complex tangent space at the origin (assumed to be in \(\partial\Omega\)). Assume that:
(1)
the set \( T_0^{\mathbb C}\cap\Omega\) is nonempty and open in \(T_0^{\mathbb C}\);
(2)
\(\Omega\) is defined by \(\text{Re}\;w + \eta(z,\overline{z}) + \psi(z,\overline{z},\text{Im}\;w) \cdot (\text{Im}\;w)^2 < 0\) in coordinates \((z,w)\) and \(\eta\) has no harmonic term;
(3)
for \(f\in \text{Aut}_0(\Omega)\), the function \((z,w)\mapsto (f(z,0),w)\) extends to \(\Omega\) as an automorphism fixing 0;
(4)
0 is not a boundary accumulation point.
Then every automorphism of \(\Omega\) fixing 0 has the form \((z,w)\mapsto (\varphi(z),w)\).
The Levi-flat case assumes that a local defining function for \(\Omega\) has the form \(\text{Re}\;w=0\), assumption (3) above, and every automorphism of \(\Omega\) extends holomorphically to some neighbourhood of 0. The conclusion is then the same.

MSC:

32M05 Complex Lie groups, group actions on complex spaces
32H02 Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables
Full Text: DOI

References:

[1] DOI: 10.1006/aima.1998.1821 · Zbl 1040.32019 · doi:10.1006/aima.1998.1821
[2] DOI: 10.1007/BFb0078959 · doi:10.1007/BFb0078959
[3] Kobayashi S, Hyperbolic Manifolds and Holomorphic Mappings (1970)
[4] DOI: 10.1007/s00209-008-0418-2 · Zbl 1177.32012 · doi:10.1007/s00209-008-0418-2
[5] DOI: 10.1007/BF01428194 · Zbl 0248.32013 · doi:10.1007/BF01428194
[6] Isaev A, J. Geom. Anal. 14 pp 697– (2004)
[7] Isaev A, Complex Var. Theory Appl. 50 pp 345– (2005)
[8] Isaev A, J. Geom. Anal. 15 pp 239– (2005)
[9] Isaev A, Tr. Mat. Inst. Steklova 253 pp 245– (2006)
[10] DOI: 10.1007/s00039-006-0586-3 · Zbl 1120.32014 · doi:10.1007/s00039-006-0586-3
[11] DOI: 10.2140/gt.2008.12.643 · Zbl 1143.32016 · doi:10.2140/gt.2008.12.643
[12] Isaev A, Illinois J. Math. 48 pp 37– (2004)
[13] Krantz SG, Complex var. Theory Appl. 47 pp 215– (2002)
[14] Krantz SG, Function Theory of Several Complex Variables,, 2. ed. (2001) · doi:10.1090/chel/340
[15] DOI: 10.1512/iumj.1995.44.2021 · Zbl 0857.32015 · doi:10.1512/iumj.1995.44.2021
[16] Narasimhan R, Several Complex Variables (1971)
[17] DOI: 10.1006/jmaa.1993.1362 · Zbl 0816.32015 · doi:10.1006/jmaa.1993.1362
[18] DOI: 10.1006/jmaa.2001.7736 · Zbl 1005.32016 · doi:10.1006/jmaa.2001.7736
[19] DOI: 10.1090/S0002-9939-1991-1052577-8 · doi:10.1090/S0002-9939-1991-1052577-8
[20] Greene RE, Proc. Symp. Pure Math. 41 pp 77– (1984)
[21] Gifford J, Illinois J. Math. 44 pp 602– (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.