×

Number theoretic properties of generating functions related to Dyson’s rank for partitions into distinct parts. (English) Zbl 1216.11093

Summary: Let \(Q(n)\) denote the number of partitions of \(n\) into distinct parts. We show that Dyson’s rank provides a combinatorial interpretation of the well-known fact that \(Q(n)\) is almost always divisible by 4. This interpretation gives rise to a new false theta function identity that reveals surprising analytic properties of one of Ramanujan’s mock theta functions, which in turn gives generating functions for values of certain Dirichlet \(L\)-functions at nonpositive integers.

MSC:

11P82 Analytic theory of partitions
11P83 Partitions; congruences and congruential restrictions
Full Text: DOI

References:

[1] Krishnaswami Alladi, Partition identities involving gaps and weights, Trans. Amer. Math. Soc. 349 (1997), no. 12, 5001 – 5019. · Zbl 0893.11042
[2] George E. Andrews, Simplicity and surprise in Ramanujan’s ”lost” notebook, Amer. Math. Monthly 104 (1997), no. 10, 918 – 925. · Zbl 0914.11007 · doi:10.2307/2974472
[3] George E. Andrews, Freeman J. Dyson, and Dean Hickerson, Partitions and indefinite quadratic forms, Invent. Math. 91 (1988), no. 3, 391 – 407. · Zbl 0642.10012 · doi:10.1007/BF01388778
[4] George E. Andrews, Jorge Jiménez-Urroz, and Ken Ono, \?-series identities and values of certain \?-functions, Duke Math. J. 108 (2001), no. 3, 395 – 419. · Zbl 1005.11048 · doi:10.1215/S0012-7094-01-10831-4
[5] George E. Andrews and F. G. Garvan, Dyson’s crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 167 – 171. · Zbl 0646.10008
[6] Tom M. Apostol, Introduction to analytic number theory, Springer-Verlag, New York-Heidelberg, 1976. Undergraduate Texts in Mathematics. · Zbl 0335.10001
[7] A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84 – 106. · Zbl 0055.03805 · doi:10.1112/plms/s3-4.1.84
[8] K. Bringmann and K. Ono, Dyson’s ranks and Maass forms, Annals of Mathematics, to appear. · Zbl 1277.11096
[9] H. Cohen, \?-identities for Maass waveforms, Invent. Math. 91 (1988), no. 3, 409 – 422. · Zbl 0642.10013 · doi:10.1007/BF01388779
[10] F. J. Dyson, Some guesses in the theory of partitions, Eureka, vol. 8, Cambridge, 1944, 10-15.
[11] F. G. Garvan, New combinatorial interpretations of Ramanujan’s partition congruences mod 5,7 and 11, Trans. Amer. Math. Soc. 305 (1988), no. 1, 47 – 77. · Zbl 0641.10009
[12] Basil Gordon and Ken Ono, Divisibility of certain partition functions by powers of primes, Ramanujan J. 1 (1997), no. 1, 25 – 34. · Zbl 0907.11036 · doi:10.1023/A:1009711020492
[13] Jeremy Lovejoy, Divisibility and distribution of partitions into distinct parts, Adv. Math. 158 (2001), no. 2, 253 – 263. · Zbl 0998.11051 · doi:10.1006/aima.2000.1967
[14] Jeremy Lovejoy, The number of partitions into distinct parts modulo powers of 5, Bull. London Math. Soc. 35 (2003), no. 1, 41 – 46. · Zbl 1102.11056 · doi:10.1112/S0024609302001492
[15] Ken Ono, Distribution of the partition function modulo \?, Ann. of Math. (2) 151 (2000), no. 1, 293 – 307. · Zbl 0984.11050 · doi:10.2307/121118
[16] Ken Ono, The web of modularity: arithmetic of the coefficients of modular forms and \?-series, CBMS Regional Conference Series in Mathematics, vol. 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. · Zbl 1119.11026
[17] Øystein Rødseth, Congruence properties of the partition functions \?(\?) and \?\(_{0}\)(\?), Ȧrbok Univ. Bergen Mat.-Natur. Ser. 13 (1969), 27 pp. (1970). · Zbl 0243.10040
[18] Øystein Rødseth, Dissections of the generating functions of \?(\?) and \?\(_{0}\)(\?), Ȧrbok Univ. Bergen Mat.-Natur. Ser. 12 (1969), 12 pp. (1970). · Zbl 0243.10039
[19] J. J. Sylvester and F. Franklin, A Constructive Theory of Partitions, Arranged in Three Acts, an Interact and an Exodion, Amer. J. Math. 5 (1882), no. 1-4, 251 – 330. · JFM 15.0129.02 · doi:10.2307/2369545
[20] Don Zagier, Vassiliev invariants and a strange identity related to the Dedekind eta-function, Topology 40 (2001), no. 5, 945 – 960. · Zbl 0989.57009 · doi:10.1016/S0040-9383(00)00005-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.