×

Weak asymptotics in the 3-dim Frobenius problem. (English) Zbl 1216.11092

In this paper the author considers a few related conjectures of Arnold on the properties of numerical semigroups with exactly three minimal generators. Recall that a numerical semigroup is an additive submonoid of \(\mathbb{N}_0\) with finite complement in \(\mathbb{N}_0\). The largest element of the complement is called the Frobenius number of the semigroup. The Frobenius number plus one is called the conductor.
One of Arnold’s conjectures discussed in this paper, Problem #1999-8 in the book [Arnold’s problems. Berlin: Springer (2004; Zbl 1051.00002)], asks for the average value of the conductor as we take a fixed numerical semigroup with generators \(d_1,d_2, d_3\) and consider the semigroups with generators \(Nd_1 + j_1, N d_2 + j_2, N d_3 + j_3\) where each \(j_i \in [-r,r]\) and \(r\) and \(N\) go to infinity with \(r\) small relative to \(N\). A related conjecture asks for statistics for the number of elements less than the Frobenius number contained in a semigroup under a similar kind of averaging. This type of averaging is known as the study of “weak asymptotics at typical large vectors”.
The author studies these problems in detail and refutes Arnold’s conjectures in the case of semigroups with three minimal generators. The approach builds on the author’s earlier work [Funct. Anal. Other Math. 1, No. 2, 119–157 (2006; Zbl 1194.20058)].
I believe that this paper would have benefitted greatly from more careful editing. The exposition is sometimes unclear and contains several mistakes in the use of English. Some of the proofs, particularly in the paper’s final section, could also be improved.

MSC:

11P21 Lattice points in specified regions
11D07 The Frobenius problem
11N56 Rate of growth of arithmetic functions
Full Text: DOI

References:

[1] Arnold VI (1999) Weak asymptotics of the numbers of solutions of Diophantine equations. Funct Anal Appl 33(4):292–293 · Zbl 1042.11064 · doi:10.1007/BF02467112
[2] Arnold VI (ed) (2004/2000) Arnold’s problems. Springer/PHASIS, Berlin/Moscow, pp 129–130, 163
[3] Fel LG (2006) Frobenius problem for semigroups \(\mathsf{S}(d_{1},d_{2},d_{3})\) . Funct Anal Other Math 1(2):119–157 · Zbl 1194.20058 · doi:10.1007/s11853-007-0009-5
[4] Fröberg R, Gottlieb C, Häggkvist R (1987) On numerical semigroups. Semigroup Forum 35(1):63–83 · Zbl 0614.10046 · doi:10.1007/BF02573091
[5] Brown WC, Curtis F (1991) Numerical semigroups of maximal and almost maximal length. Semigroup Forum 42(2):219–235 · Zbl 0722.20046 · doi:10.1007/BF02573421
[6] Brown WC, Herzog J (1992) One-dimensional local rings of maximal and almost maximal length. J Algebra 151(2):332–347 · Zbl 0773.13006 · doi:10.1016/0021-8693(92)90118-6
[7] Abhyankar SS (1967) Local rings of high embedding dimension. Am J Math 89:1073–1077 · Zbl 0159.33202 · doi:10.2307/2373418
[8] Herzog J, Kunz E (1971) Die Wertehalbgruppe eines lokalen Rings der Dimension 1. S-B Heidelberger Akad Wiss Math Natur Kl 1971:27–67
[9] Apéry R (1946) Sur les branches superlinéaires des courbes algébriques. C R Acad Sci Paris 222:1198–1200 · Zbl 0061.35404
[10] Kunz E (1985) Introduction to commutative algebra and algebraic geometry. Boston, Birkhäuser · Zbl 0563.13001
[11] Kunz E (1970) The value-semigroup of a one-dimensional Gorenstein ring. Proc Am Math Soc 25:748–751 · Zbl 0197.31401 · doi:10.1090/S0002-9939-1970-0265353-7
[12] Serre J-P (1963) Sur les modules projectifs, Séminaire Dubreil–Pisot 1960/61, Fasc 1, Exposé 2, 16 pp Secrétariat math, Paris
[13] Herzog J (1970) Generators and relations of Abelian semigroups and semigroup rings. Manuscr Math 3:175–193 · Zbl 0211.33801 · doi:10.1007/BF01273309
[14] Watanabe K (1973) Some examples of one dimensional Gorenstein domains. Nagoya Math J 49:101–109 · Zbl 0257.13024
[15] Arnold VI (2003) Topology and statistics of formulas of arithmetics. Russ Math Surv 58(4):637–664 · Zbl 1124.11304 · doi:10.1070/RM2003v058n04ABEH000641
[16] Apostol TM (1976) Introduction to analytic number theory. Springer, New York · Zbl 0335.10001
[17] Sylvester JJ et al (1884) Problems from the theory of numbers, with solutions. Educational Times 40–41
[18] Curtis F (1990) On formulas for the Frobenius number of a numerical semigroup. Math Scand 67(2):190–192 · Zbl 0734.11009
[19] Fel LG (2007) Analytic representations in the 3-dim Frobenius problem. Funct Anal Other Math 2(1)
[20] KillingbergtrøHG (2000) Betjening av figur i Frobenius’ problem (Using figures in Frobenius’ problem). Normat 48(2):75–82 · Zbl 0986.11018
[21] Sally JD (1979) Cohen-Macaulay local rings of maximal embedding dimension. J Algebra 56(1):168–183 · Zbl 0401.13016 · doi:10.1016/0021-8693(79)90331-4
[22] Herzog J, Kunz E (eds) (1971) Der kanonische Modul eines Cohen-Macaulay-Rings. Lecture notes in mathematics, vol 238. Springer, Berlin · Zbl 0231.13009
[23] Johnson SM (1960) A linear Diophantine problem. Can J Math 12:390–398 · Zbl 0096.02803 · doi:10.4153/CJM-1960-033-6
[24] Hardy GH, Littlewood JE, Pólya G (1952) Inequalities, 2nd edn. Cambridge University Press, Cambridge
[25] Benson DJ (1993) Polynomial invariants of finite groups. Cambridge University Press, Cambridge · Zbl 0864.13001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.