×

Symplectic exponentially-fitted four-stage Runge-Kutta methods of the Gauss type. (English) Zbl 1215.65130

Summary: The construction of symmetric and symplectic exponentially-fitted Runge-Kutta methods for the numerical integration of Hamiltonian systems with oscillatory solutions deserves a lot of interest. In previous papers fourth-order and sixth-order symplectic exponentially-fitted integrators of Gauss type, either with fixed or variable nodes, have been derived. In this paper new such integrators of eighth-order are studied and constructed by making use of the six-step procedure of L. Gr. Ixaru and G. Vanden Berghe [Exponential Fitting. Mathematics and its Applications (Dordrecht) 568. Dordrecht: Kluwer Academic Publishers (2004; Zbl 1105.65082)]. Numerical experiments for some oscillatory problems are presented.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations

Citations:

Zbl 1105.65082
Full Text: DOI

References:

[1] Bettis, D.G.: Runge–Kutta algorithms for oscillatory problems. J. Appl. Math. Phys. (ZAMP) 30, 699–704 (1979) · Zbl 0412.65038 · doi:10.1007/BF01590846
[2] Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Structure preservation of exponentially fitted Runge–Kutta methods. J. Comput. Appl. Math. 218, 421–434 (2008) · Zbl 1154.65341 · doi:10.1016/j.cam.2007.05.016
[3] Vigo-Aguiar, J., Simos, T.E., Tocino, A.: An adapted symplectic integrator for Hamiltonian problems. Int. J. Mod. Phys. C 12, 225–234 (2001) · doi:10.1142/S0129183101001626
[4] Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Sixth-order symmetric and symplectic exponentially fitted Runge–Kutta methods of the Gauss type. Comput. Phys. Commun. 178, 732–744 (2008) · Zbl 1196.70007 · doi:10.1016/j.cpc.2008.01.046
[5] Calvo, M., Franco, J.M., Montijano, J.I., Rández, L.: Sixth-order symmetric and symplectic exponentially fitted modified Runge–Kutta methods of the Gauss type. J. Comput. Appl. Math. 223, 387–398 (2009) · Zbl 1153.65119 · doi:10.1016/j.cam.2008.01.026
[6] Franco, J.M.: Runge–Kutta methods adapted to the numerical integration of oscillatory problems. Appl. Numer. Math. 50, 427–443 (2004) · Zbl 1057.65043 · doi:10.1016/j.apnum.2004.01.005
[7] Ozawa, K.: A functional fitting Runge–Kutta method with variable coefficients. Jpn. J. Ind. Appl. Math. 18, 107–130 (2001) · Zbl 0985.65085 · doi:10.1007/BF03167357
[8] Simos, T.E.: An exponentially-fitted Runge–Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions. Comput. Phys. Commun. 115, 1–8 (1998) · Zbl 1001.65080 · doi:10.1016/S0010-4655(98)00088-5
[9] Vigo-Aguiar, J., Ramos, H.: Dissipative Chebyshev exponential-fitted methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158, 187–211 (2003) · Zbl 1042.65053 · doi:10.1016/S0377-0427(03)00473-4
[10] Simos, T.E., Vigo-Aguiar, J.: A modified Runge–Kutta method with phase-lag of order infinity for the numerical solution of the Schrödinger equation and related problems. Comput. Chem. 25, 275–281 (2001) · Zbl 1064.65069 · doi:10.1016/S0097-8485(00)00101-7
[11] Simos, T.E., Vigo-Aguiar, J.: Exponentially-fitted symplectic integrator. Phys. Rev. E67, 1–7 (2003) · Zbl 1196.65123
[12] Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted explicit Runge–Kutta methods. Comput. Phys. Commun. 123, 7–15 (1999) · Zbl 0948.65066 · doi:10.1016/S0010-4655(99)00365-3
[13] Vanden Berghe, G., De Meyer, H., Van Daele, M., Van Hecke, T.: Exponentially-fitted Runge–Kutta methods. J. Comput. Appl. Math. 125, 107–115 (2000) · Zbl 0999.65065 · doi:10.1016/S0377-0427(00)00462-3
[14] Vanden Berghe, G., Van Daele, M., Van de Vyver, H.: Exponentially-fitted Runge–Kutta methods of collocation type: fixed or variable knot points? J. Comput. Appl. Math. 159, 217–239 (2003) · Zbl 1031.65084 · doi:10.1016/S0377-0427(03)00450-3
[15] Vanden Berghe, G., Van Daele, M.: Symplectic exponentially-fitted modified Runge–Kutta methods of the Gauss type: revisited. Ann. Eur. Acad. Sci. (on computational mathematics) (2010, in press) · Zbl 1216.65092
[16] Van de Vyver, H.: A fourth order symplectic exponentially fitted integrator. Comput. Phys. Commun. 174, 255–262 (2006) · Zbl 1196.37122 · doi:10.1016/j.cpc.2005.10.007
[17] Vigo-Aguiar, J., Simos T.E., Ferrandiz, J.M.: Controlling the error growth in long-term numerical integration of perturbed oscillations in one or several frequencies. Proc. R. Soc. A Math. Phys. Eng. Sci. 460, 561–567 (2004) · Zbl 1041.65058 · doi:10.1098/rspa.2003.1210
[18] Ixaru, L.Gr., Vanden Berghe, G.: Exponential fitting. In: Mathematics and Its Applications, vol. 568. Kluwer Academic, Dordrecht (2004) · Zbl 1105.65082
[19] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002) · Zbl 0994.65135
[20] Cooper, G.J.: Stability of Runge–Kutta methods for trajectory problems. IMA J. Numer. Anal. 7, 1–13 (1987) · Zbl 0624.65057 · doi:10.1093/imanum/7.1.1
[21] Sanz-Serna, J.M.: Symplectic integrators for Hamiltonian problems: an overview. Acta Numer. 1, 243–286 (1992) · Zbl 0762.65043 · doi:10.1017/S0962492900002282
[22] Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman and Hall, London (1994)
[23] Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems. Springer, Berlin (1993) · Zbl 0789.65048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.