×

A transfer principle for inequalities in vector lattices. (English) Zbl 1215.46005

The aim of the paper is to give a principle which enables one to transfer inequalities with semi-inner products to inequalities containing positive semidefinite symmetric bilinear operators with values in a vector lattice.
For \(N\) in \(\mathbb N\), let \({\mathcal H}(\mathbb {R}^{N})\) denote the vector lattice of all continuous functions \(\phi : \mathbb {R}^{N} \rightarrow \mathbb N\) which satisfy \(\phi(\lambda t) = \lambda\phi(t)\) \((t\in \mathbb {R}^{N}\), \(0< \lambda \in \mathbb R)\).
For a finite collection \(x_1,\dots ,x_N \) in \(E\) and \(\phi \in {\mathcal H}(\mathbb {R}^{N})\), \(\widehat{\phi}(x_1,\dots ,x_N)\) is defined on \(E\) if there exists \(y\in E\) such that \(w(y) = \phi( w(x_1),\dots ,w(x_n))\) for every real valued lattice homomorphism \(w\) on the vector sublattice of \(E\) generated by \(\{x_1,\dots ,x_N\}\). Denote by \({\mathcal H} \vee (\mathbb {R}^{N})\) and \({\mathcal H} \wedge (\mathbb {R}^{N})\), respectively, the set of all continuous sublinear and continuous superlinear functions on \(\mathbb R^{N}\).
If \(E\) is a uniformly complete vector lattice and \(x_1,\dots ,x_N \in E\). Then \(\widehat{\phi}\{x_1,\dots ,x_N\}\) exists for every \(\phi\in {\mathcal H} (\mathbb R^{N})\). The map \( \phi \rightarrow \widehat{\phi}(x_1,\dots ,x_N)\), \(\phi \in {\mathcal H}(\mathbb R^{N})\) is a unique lattice homomorphism from \({\mathcal H}(\mathbb R^{N})\) into \(E\) with \(\widehat{dx_j}(x_1,\dots x_N) = x_j\) for \(1,\dots ,N\). Denote \(I = \{ 1,\dots ,n\}\) and \(J = \{1,\dots ,m\}\) and \(N = nm\). For a fixed bijection \(\sigma\) from \(I\times J\) onto \(\{1,\dots ,N\}\), consider positive homogeneous continuous mappings \(\Phi,\Phi':\mathbb {R}^{N} \rightarrow \mathbb {R}^{k}\), \(\Psi,\Psi' :\mathbb {R}^{N} \rightarrow \mathbb {R}^{j}\) and denote (for \(t\in \mathbb {R}^{N}\), \(u\in E^N)\):
\[ \begin{aligned} \Phi(t) &= (\phi_1(t),\dots ,\phi_k(t)), \quad \Phi'(t) = (\phi'_1(t),\dots ,\phi'_k(t)),\\ \Phi(t) \Phi'(t) &= (\phi_1(t)\phi'_1(t),\dots ,\phi_k(t)\phi'_k(t)),\\ \widehat{\Phi}(u)\circ\widehat{\Phi}(u) &= (\widehat{\phi_1}(u) \circ\widehat{\phi'_1}(u),\dots ,\widehat{\phi_k}(u)\circ \widehat{\phi'_k}(u)), \end{aligned} \]
and analogously for \(\Psi(t)\Psi'(t)\) and \(\widehat\Psi(u)\circ\Psi'(u)\).
The main theorem of the paper is as follows.
Theorem (Transfer Principle). Let \(E,F\) be uniformly complete vector lattices, let \(X\) be a real vector space and \(x_i,y_j\in X\) \((i\in I, j\in J)\). Let \(\phi \in {\mathcal H}(\mathbb {R}^{N})\wedge \mathbb {R}^{N}\) and \(\psi\in {\mathcal H}(\mathbb {R}^{N})\vee \mathbb {R}^{N}\). If for any semi-inner product \((\cdot,\cdot)\) on \(X\), the inequality
\[ \psi(\Psi(t)\Psi'(t)) \leq \phi(\Phi(t) \Phi'(t)) \]
holds with \(t = (t_1,\dots ,t_N)\in \mathbb R^N\), \(t_{\sigma(i,j)} = (x_i,x_j)\), then for any positive semidefinite symmetric bilinear operator \(\left\langle\cdot,\cdot\right\rangle \) from \(X \times X\) to \(E\) and any positive orthosymmetric bilinear operator \(\circ : E\times E \rightarrow F \), the inequality
\[ \widehat{\phi} (\widehat{\Psi}(u)\circ\widehat{\Psi'}(u)) \leq \widehat{\phi}(\widehat{\Phi}(u) \circ \widehat{\Phi'}(u)) \]
holds with \(u = (u_1,\dots ,u_N) \in E^N\), \(u_{\sigma(i,j)} = \left\langle x_i,y_j\right\rangle\), \((i,j)\in I\times J\).
There are plenty of examples.

MSC:

46A40 Ordered topological linear spaces, vector lattices
Full Text: DOI

References:

[1] Aliprantis, C. D.; Burkinshaw, O., Positive Operators (1985), Acad. Press Inc.: Acad. Press Inc. London · Zbl 0567.47037
[2] Beckenbach, E. F.; Bellman, R., Inequalities (1961), Springer-Verlag: Springer-Verlag Berlin · Zbl 0513.26003
[3] Bernau, S. J.; Huijsmans, C. B., Almost \(f\)-algebras and \(d\)-algebras, Math. Proc. Cambridge Philos. Soc., 107, 287-308 (1990) · Zbl 0707.06009
[4] Bellman, R., Almost orthogonal series, Bull. Amer. Math. Soc., 50, 517-519 (1944) · Zbl 0060.17109
[5] Boas, R. P., A general moment problem, Amer. J. Math., 63, 361-370 (1941) · Zbl 0025.25404
[6] Bombieri, E., A note on the large sieve, Acta Arith., 18, 401-404 (1971) · Zbl 0219.10055
[7] Bourbaki, N., Integration (1967), Hermann: Hermann Paris, (in French) · Zbl 0143.27101
[8] Bu, Q.; Buskes, G.; Kusraev, A. G., Bilinear maps on product of vector lattices: A survey, (Boulabiar, K.; Buskes, G.; Triki, A., Positivity (2007), Birkhäuser: Birkhäuser Basel), 97-126 · Zbl 1149.46007
[9] Buskes, G.; de Pagter, B.; van Rooij, A., Functional calculus on Riesz spaces, Indag. Math. (N.S.), 4, 2, 423-436 (1991) · Zbl 0781.46008
[10] Buskes, G.; Kusraev, A. G., Representation and extension of orthoregular bilinear operators, Vladikavkaz Math. J., 9, 1, 16-29 (2007) · Zbl 1324.46011
[11] Buskes, G.; van Rooij, A., Almost \(f\)-algebras: commutativity and the Cauchy-Schwarz inequality, Positivity, 4, 227-231 (2000) · Zbl 0987.46002
[12] Buzano, M. L., Generalizzazione della diseguaglianza di Cauchy-Schwarz, Rend. Sem. Mat. Univ. Politech. Torino, 31, 405-409 (1971/1973), (in Italian) · Zbl 0285.46016
[13] Dragomir, S. S., A Survey on Cauchy-Buniakowsky-Schwartz Type Discrete Inequalities, RGMIA Monogr. (2000), Victoria University
[14] Dragomir, S. S., Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, RGMIA Monogr. (2004), Victoria University · Zbl 1056.26009
[15] Dragomir, S. S., Advances in Inequalities of the Schwarz, Triangle and Heisenberg Type in Inner Product Spaces, RGMIA Monogr. (2004), Victoria University · Zbl 1056.26009
[16] Dragomir, S. S.; Pearce, C. E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monogr. (2002), Victoria University, 361 pp · Zbl 1008.26009
[17] Haase, M., Convexity inequalities for positive operators, Positivity, 11, 1, 57-68 (2007) · Zbl 1123.47016
[18] Huijsmans, C. B.; de Pagter, B., Averaging operators and positive contractive projections, J. Math. Anal. Appl., 107, 163-184 (1986) · Zbl 0604.47024
[19] J.L. Krivine, Théorèmes de factorisation dans les espaces réticulés, in: Seminar Maurey-Schwartz (1973-1974), École Politech., Exposé 22-23.; J.L. Krivine, Théorèmes de factorisation dans les espaces réticulés, in: Seminar Maurey-Schwartz (1973-1974), École Politech., Exposé 22-23. · Zbl 0295.47024
[20] Kurepa, S., Konačno dimenzionalni vektorski prostori i primjene (1967), Tehnička knjiga: Tehnička knjiga Zagreb
[21] Kusraev, A. G., On the structure of orthosymmetric bilinear operators in vector lattices, Dokl. RAS, 408, 1, 25-27 (2006) · Zbl 1327.47033
[22] Kusraev, A. G., Dominated Operators (2000), Dordrecht: Dordrecht Kluwer · Zbl 0983.47025
[23] Kusraev, A. G., Orthosymmetric Bilinear Operators (2007), Inst. of Appl. Math. and Infomat. VSC RAS: Inst. of Appl. Math. and Infomat. VSC RAS Vladikavkaz, pp. 1-34 (preprint No. 1) · Zbl 1324.47035
[24] Kusraev, A. G., Homogeneous Functional Calculus on Vector Lattices (2008), Inst. of Appl. Math. and Infomat. VSC RAS: Inst. of Appl. Math. and Infomat. VSC RAS Vladikavkaz, pp. 1-34 (preprint No. 1)
[25] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces, vol. 2. Function Spaces (1979), Springer-Verlag: Springer-Verlag Berlin · Zbl 0403.46022
[26] Lozanovskiĭ, G. Ya., The functions of elements of vector lattices, Izv. Vyssh. Uchebn. Zaved. Mat., 4, 45-54 (1973) · Zbl 0261.46009
[27] Maligranda, L., Positive bilinear operators in Calderón-Lozanovskiĭ spaces, Arch. Math. (Basel), 81, 1, 26-37 (2003) · Zbl 1052.46020
[28] Meyer-Nieberg, P., Banach Lattices (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0743.46015
[29] Mitrinović, D. S., Analytic Inequalities (1970), Springer-Verlag: Springer-Verlag Berlin · Zbl 0199.38101
[30] Mitrinović, D. S.; Pečarić, J. E.; Fink, A. M., Classical and New Inequalities in Analysis (1993), Dordrecht: Dordrecht Kluwer · Zbl 0771.26009
[31] Precupanu, T., On a generalisation of Cauchy-Buniakowski-Schwarz inequality, Anal. St. Univ. “Al. I. Cuza” Iaşi, 22, 2, 173-175 (1976) · Zbl 0361.46018
[32] Schaefer, H. H., Banach Lattices and Positive Operators (1974), Springer-Verlag: Springer-Verlag Berlin · Zbl 0291.46008
[33] Schwarz, H.-U., Banach Lattices and Operators (1984), Teubner: Teubner Leipzig · Zbl 0585.47025
[34] Sitnik, S. M., Refinements and generalization of classical inequalities, (Korobeinik, Yu. F.; Kusraev, A. G., Mathematical Forum. Mathematical Forum, Stud. Math. Anal., vol. 3 (2009), Vladikavkaz Science Center of RAS: Vladikavkaz Science Center of RAS Vladikavkaz), 221-266, (in Russian)
[35] Steele, J. M., The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities (2004), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1060.26023
[36] Szulga, J., \((p, r)\)-Convex functions on vector lattices, Proc. Edinb. Math. Soc., 37, 2, 207-226 (1994) · Zbl 0805.46006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.