×

Superspecial Abelian varieties and the Eichler basis problem for Hilbert modular forms. (English) Zbl 1214.11076

Summary: Let \(p\) be an unramified prime in a totally real field \(L\) such that \(h^{+}(L)=1\). Our main result shows that Hilbert modular newforms of parallel weight two for \(\Gamma _{0}(p)\) can be constructed naturally, via classical theta series, from modules of isogenies of superspecial abelian varieties with real multiplication on a Hilbert moduli space. This may be viewed as a geometric reinterpretation of the Eichler basis problem for Hilbert modular forms.

MSC:

11G10 Abelian varieties of dimension \(> 1\)
11G18 Arithmetic aspects of modular and Shimura varieties
11F41 Automorphic forms on \(\mbox{GL}(2)\); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces

References:

[1] Brzezi��ski, J., On orders in quaternion algebras, Comm. Algebra, 11, 5, 501-522 (1983) · Zbl 0517.16006
[2] Chai, C.-L., Every ordinary symplectic isogeny class in positive characteristic is dense in the moduli, Invent. Math., 121, 3, 439-479 (1995) · Zbl 0990.11039
[3] Conrad, B., Gross-Zagier revisited, (Heegner Points and Rankin \(L\)-Series. Heegner Points and Rankin \(L\)-Series, Math. Sci. Res. Inst. Publ., vol. 49 (2004), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 67-163, (with an appendix by W.R. Mann) · Zbl 1072.11040
[4] Deligne, P.; Pappas, G., Singularités des espaces de modules de Hilbert, en les caractéristiques divisant le discriminant, Compos. Math., 90, 1, 59-79 (1994) · Zbl 0826.14027
[5] Deuring, M., Algebren, Ergeb. Math. Grenzgeb., Band 41 (1968), Springer-Verlag: Springer-Verlag Berlin, New York, viii+143 pp · Zbl 0159.04201
[6] Eichler, M., On theta functions of real algebraic number fields, Acta Arith., 33, 3, 269-292 (1977) · Zbl 0348.10017
[7] Gelbart, S., Automorphic Forms on Adele Groups, Ann. of Math. Stud., vol. 83 (1975), Princeton Univ. Press/University of Tokyo Press: Princeton Univ. Press/University of Tokyo Press Princeton, NJ/Tokyo, x+267 pp · Zbl 0329.10018
[8] Gelbart, S., Examples of dual reductive pairs, (Automorphic Forms, Representations and \(L\)-Functions, Proc. Sympos. Pure Math., Part 1. Automorphic Forms, Representations and \(L\)-Functions, Proc. Sympos. Pure Math., Part 1, Oregon State Univ., Corvallis, OR, 1977. Automorphic Forms, Representations and \(L\)-Functions, Proc. Sympos. Pure Math., Part 1. Automorphic Forms, Representations and \(L\)-Functions, Proc. Sympos. Pure Math., Part 1, Oregon State Univ., Corvallis, OR, 1977, Proc. Sympos. Pure Math., vol. XXXIII (1979), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 287-296 · Zbl 0425.22024
[9] Goren, E. Z.; Oort, F., Stratifications of Hilbert modular varieties, J. Algebraic Geom., 9, 1, 111-154 (2000) · Zbl 0973.14010
[10] Hida, H., \(p\)-Adic Automorphic Forms on Shimura Varieties, Springer Monogr. Math. (2004), Springer-Verlag: Springer-Verlag New York, xii+390 pp · Zbl 1055.11032
[11] Hijikata, H.; Pizer, A. K.; Shemanske, T. R., The basis problem for modular forms on \(\Gamma_0(N)\), Mem. Amer. Math. Soc., 82, 418 (1989), vi+159 pp · Zbl 0689.10034
[12] Jacquet, H.; Langlands, R. P., Automorphic Forms on \(GL(2)\), Lecture Notes in Math., vol. 114 (1970), Springer-Verlag: Springer-Verlag Berlin, New York, vii+548 pp · Zbl 0236.12010
[13] Manin, Y., Theory of commutative formal groups over fields of finite characteristic, Uspekhi Mat. Nauk, 18, 6 (114), 3-90 (1963), (in Russian) · Zbl 0128.15603
[14] M.-H. Nicole, Superspecial abelian varieties, theta series and the Jacquet-Langlands correspondence, PhD thesis, McGill University, 2005; M.-H. Nicole, Superspecial abelian varieties, theta series and the Jacquet-Langlands correspondence, PhD thesis, McGill University, 2005
[15] M.-H. Nicole, The Manin stratification of Hilbert modular varieties, preprint; M.-H. Nicole, The Manin stratification of Hilbert modular varieties, preprint
[16] Rapoport, M., Compactifications de l’espace de modules de Hilbert-Blumenthal, Compos. Math., 36, 3, 255-335 (1978) · Zbl 0386.14006
[17] Serre, J.-P., Local class field theory, (Algebraic Number Theory, Proc. Instructional Conf.. Algebraic Number Theory, Proc. Instructional Conf., Brighton, 1965 (1967), Thompson: Thompson Washington, DC), 128-161 · Zbl 1492.11158
[18] Shioda, T., Supersingular \(K3\) surfaces, (Algebraic Geometry, Proc. Summer Meeting. Algebraic Geometry, Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978. Algebraic Geometry, Proc. Summer Meeting. Algebraic Geometry, Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978, Lecture Notes in Math., vol. 732 (1979), Springer: Springer Berlin), 564-591 · Zbl 0414.14019
[19] Stamm, H., On the reduction of the Hilbert-Blumenthal-moduli scheme with \(\Gamma_0(p)\)-level structure, Forum Math., 9, 4, 405-455 (1997) · Zbl 0916.14022
[20] Tate, J., Endomorphisms of abelian varieties over finite fields, Invent. Math., 2, 134-144 (1966) · Zbl 0147.20303
[21] Vignéras, Marie-France, Arithmétique des algèbres de quaternions, Lecture Notes in Math., vol. 800 (1980), Springer: Springer Berlin, vii+169 pp · Zbl 0422.12008
[22] Waterhouse, W. C., Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. (4), 2, 521-560 (1969) · Zbl 0188.53001
[23] Waterhouse, W. C.; Milne, J. S., Abelian varieties over finite fields, (1969 Number Theory Institute. 1969 Number Theory Institute, State Univ. New York, Stony Brook, NY, 1969. 1969 Number Theory Institute. 1969 Number Theory Institute, State Univ. New York, Stony Brook, NY, 1969, Proc. Sympos. Pure Math., vol. XX (1971), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 53-64 · Zbl 0216.33102
[24] Yu, C.-F., On the supersingular locus in Hilbert-Blumenthal 4-folds, J. Algebraic Geom., 12, 4, 653-698 (2003) · Zbl 1059.14031
[25] Yu, C.-F., On the mass formula of supersingular abelian varieties with real multiplications, J. Aust. Math. Soc., 78, 3, 373-392 (2005) · Zbl 1137.11323
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.