×

Families of elliptic curves over cubic number fields with prescribed torsion subgroups. (English) Zbl 1214.11071

Summary: In this paper we construct infinite families of elliptic curves with given torsion group structures over cubic number fields. This result provides explicit examples of the theoretical result recently developed by the first two authors and A. Schweizer [Acta Arith. 113, No. 3, 291–301 (2004; Zbl 1083.11038)]; they determined all the group structures which occur infinitely often as the torsion of elliptic curves over cubic number fields. In fact, this paper presents an efficient way of constructing such families of elliptic curves with prescribed torsion group structures over cubic number fields.

MSC:

11G05 Elliptic curves over global fields
11G18 Arithmetic aspects of modular and Shimura varieties

Citations:

Zbl 1083.11038
Full Text: DOI

References:

[1] Dale Husem��ller, Elliptic curves, 2nd ed., Graduate Texts in Mathematics, vol. 111, Springer-Verlag, New York, 2004. With appendices by Otto Forster, Ruth Lawrence and Stefan Theisen. · Zbl 1040.11043
[2] Daeyeol Jeon, Chang Heon Kim, and Euisung Park, On the torsion of elliptic curves over quartic number fields, J. London Math. Soc. (2) 74 (2006), no. 1, 1 – 12. · Zbl 1165.11054 · doi:10.1112/S0024610706022940
[3] Daeyeol Jeon, Chang Heon Kim, and Andreas Schweizer, On the torsion of elliptic curves over cubic number fields, Acta Arith. 113 (2004), no. 3, 291 – 301. · Zbl 1083.11038 · doi:10.4064/aa113-3-6
[4] S. Kamienny and B. Mazur, Rational torsion of prime order in elliptic curves over number fields, Astérisque 228 (1995), 3, 81 – 100. With an appendix by A. Granville; Columbia University Number Theory Seminar (New York, 1992). · Zbl 0846.14012
[5] C.H. Kim and J.K. Koo, Generators of function fields of the modular curves \( X_1(5)\) and \( X_1(6)\), Math. Comp. 79 (2010), 1047-1066. · Zbl 1221.11103
[6] Anthony W. Knapp, Elliptic curves, Mathematical Notes, vol. 40, Princeton University Press, Princeton, NJ, 1992. · Zbl 0804.14013
[7] Daniel Sion Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3) 33 (1976), no. 2, 193 – 237. · Zbl 0331.14010 · doi:10.1112/plms/s3-33.2.193
[8] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33 – 186 (1978). · Zbl 0394.14008
[9] Loïc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437 – 449 (French). · Zbl 0936.11037 · doi:10.1007/s002220050059
[10] Attila Pethö, Thomas Weis, and Horst G. Zimmer, Torsion groups of elliptic curves with integral \?-invariant over general cubic number fields, Internat. J. Algebra Comput. 7 (1997), no. 3, 353 – 413. · Zbl 0868.11030 · doi:10.1142/S0218196797000174
[11] Pierre Parent, No 17-torsion on elliptic curves over cubic number fields, J. Théor. Nombres Bordeaux 15 (2003), no. 3, 831 – 838 (English, with English and French summaries). · Zbl 1072.11037
[12] Pierre Parent, Torsion des courbes elliptiques sur les corps cubiques, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 723 – 749 (French, with English and French summaries). · Zbl 0971.11030
[13] Markus A. Reichert, Explicit determination of nontrivial torsion structures of elliptic curves over quadratic number fields, Math. Comp. 46 (1986), no. 174, 637 – 658. · Zbl 0605.14028
[14] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. · Zbl 0585.14026
[15] Yifan Yang, Defining equations of modular curves, Adv. Math. 204 (2006), no. 2, 481 – 508. · Zbl 1137.11027 · doi:10.1016/j.aim.2005.05.019
[16] Horst G. Zimmer, Torsion groups of elliptic curves over cubic and certain biquadratic number fields, Arithmetic geometry (Tempe, AZ, 1993) Contemp. Math., vol. 174, Amer. Math. Soc., Providence, RI, 1994, pp. 203 – 220. · Zbl 0816.11035 · doi:10.1090/conm/174/01861
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.