×

Congruences among modular forms on \(\text{U}(2,2)\) and the Bloch-Kato conjecture. (English) Zbl 1214.11055

Summary: Let \(k\) be a positive integer divisible by 4, \(p>k\) a prime, \(f\) an elliptic cuspidal eigenform (ordinary at \(p\)) of weight \(k-1\), level 4 and non-trivial character. In this paper we provide evidence for the Bloch-Kato conjecture for the motives \(ad^{0}M(-1)\) and \(ad^{0}M(2)\), where \(M\) is the motif attached to \(f\). More precisely, we prove that under certain conditions the \(p\)-adic valuation of the algebraic part of the symmetric square \(L\)-function of \(f\) evaluated at \(k\) provides a lower bound for the \(p\)-adic valuation of the order of the Pontryagin dual of the Selmer group for the adjoint of the \(p\)-adic Galois representation attached to \(f\) restricted to the Gaussian field and twisted by the inverse of the cyclotomic character. Our method uses an idea of Ribet, in that we introduce an intermediate step and produce congruences between CAP and non-CAP modular forms on the unitary group \(U(2,2)\).

MSC:

11F33 Congruences for modular and \(p\)-adic modular forms
11F55 Other groups and their modular and automorphic forms (several variables)
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
11F80 Galois representations

References:

[1] Bellaïche, J.; Chenevier, G., \(p\)-adic families of Galois representations and higher rank Selmer groups · Zbl 1095.11025
[2] Bellaïche, J.; Chenevier, G., Formes non tempérées pour \(\rm U(3)\) et conjectures de Bloch-Kato, Ann. Sci. École Norm. Sup. (4), 37, 4, 611-662 (2004) · Zbl 1201.11051
[3] Berger, T., An Eisenstein ideal for imaginary quadratic fields and the Bloch-Kato conjecture for Hecke characters (2007)
[4] Blasius, D.; Rogawski, J. D., Motives (Seattle, WA, 1991), 55, 525-571 (1994) · Zbl 0827.11033
[5] Bloch, S.; Kato, K., The Grothendieck Festschrift, Vol. I, 86, 333-400 (1990) · Zbl 0768.14001
[6] Braun, H., Hermitian modular functions, Ann. of Math. (2), 50, 827-855 (1949) · Zbl 0038.23803 · doi:10.2307/1969581
[7] Braun, H., Hermitian modular functions. II. Genus invariants of Hermitian forms, Ann. of Math. (2), 51, 92-104 (1950) · Zbl 0038.23901 · doi:10.2307/1969499
[8] Braun, H., Hermitian modular functions. III, Ann. of Math. (2), 53, 143-160 (1951) · Zbl 0041.41603 · doi:10.2307/1969345
[9] Brown, J., Saito-Kurokawa lifts and applications to the Bloch-Kato conjecture, Compos. Math., 143, 2, 290-322 (2007) · Zbl 1172.11015
[10] Bump, D., Automorphic forms and representations, 55 (1997) · Zbl 0868.11022
[11] Darmon, H.; Diamond, F.; Taylor, R., Elliptic curves, modular forms & Fermat’s last theorem (Hong Kong, 1993), 2-140 (1997) · Zbl 0877.11035
[12] Deligne, P., Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, 313-346 (1979) · Zbl 0449.10022
[13] Diamond, F.; Im, J., Seminar on Fermat’s Last Theorem (Toronto, ON, 1993-1994), 17, 39-133 (1995) · Zbl 0853.11032
[14] Diamond, Fred; Flach, Matthias; Guo, Li, The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. École Norm. Sup. (4), 37, 5, 663-727 (2004) · Zbl 1121.11045
[15] Dummigan, N., Period ratios of modular forms, Math. Ann., 318, 3, 621-636 (2000) · Zbl 1041.11037 · doi:10.1007/s002080000135
[16] Dummigan, N., Symmetric square \(L\)-functions and Shafarevich-Tate groups, Experiment. Math., 10, 3, 383-400 (2001) · Zbl 1039.11029
[17] Dummigan, N., Symmetric square L-functions and Shafarevich-Tate groups, II (2008)
[18] Eisenbud, D., Commutative algebra, 150 (1995) · Zbl 0819.13001
[19] Fontaine, J.-M., Sur certains types de représentations \(p\)-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. of Math. (2), 115, 3, 529-577 (1982) · Zbl 0544.14016 · doi:10.2307/2007012
[20] Fontaine, J.-M.; Perrin-Riou, B., Motives (Seattle, WA, 1991), 55, 599-706 (1994) · Zbl 0821.14013
[21] Freitag, E., Siegelsche Modulfunktionen, 254 (1983) · Zbl 0498.10016
[22] Gelbart, S., Automorphic forms on adèle groups (1975) · Zbl 0329.10018
[23] Gritsenko, V. A., The Maass space for \({\rm SU}(2,2)\). The Hecke ring, and zeta functions, Trudy Mat. Inst. Steklov., 183, 68-78, 223-225 (1990) · Zbl 0764.11026
[24] Gritsenko, V. A., Parabolic extensions of the Hecke ring of the general linear group. II, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 183, Modul. Funktsii i Kvadrat. Formy. 1, 56-76, 165, 167 (1990) · Zbl 0748.11026
[25] Hida, H., Galois representations and the theory of \(p\)-adic Hecke algebras, Sūgaku, 39, 2, 124-139 (1987) · Zbl 0641.10025
[26] Hida, H., Elementary theory of \(L\)-functions and Eisenstein series, 26 (1993) · Zbl 0942.11024
[27] Hida, H., Modular forms and Galois cohomology, 69 (2000) · Zbl 0952.11014
[28] Hida, H., \(p\)-adic automorphic forms on Shimura varieties (2004) · Zbl 1055.11032
[29] Hina, T.; Sugano, T., On the local Hecke series of some classical groups over \({\mathfrak{p}} \)-adic fields, J. Math. Soc. Japan, 35, 1, 133-152 (1983) · Zbl 0496.14014 · doi:10.2969/jmsj/03510133
[30] Ikeda, T., On the lifting of hermitian modular forms (2007)
[31] Iwaniec, H., Topics in classical automorphic forms, 17 (1997) · Zbl 0905.11023
[32] Kim, H., Lectures on automorphic \(L\)-functions, 20, 97-201 (2004) · Zbl 1066.11021
[33] Kings, G., The Bloch-Kato conjecture on special values of \(L\)-functions. A survey of known results, J. Théor. Nombres Bordeaux, 15, 1, 179-198 (2003) · Zbl 1050.11063 · doi:10.5802/jtnb.396
[34] Klosin, K., Congruences among automorphic forms on the unitary group \({\rm U}(2,2) (2006)\)
[35] Klosin, K., Adelic Maass spaces on \({\rm U}(2,2) (2007)\)
[36] Kojima, H., An arithmetic of Hermitian modular forms of degree two, Invent. Math., 69, 2, 217-227 (1982) · Zbl 0502.10011 · doi:10.1007/BF01399502
[37] Krieg, A., The Maaß spaces on the Hermitian half-space of degree \(2\), Math. Ann., 289, 4, 663-681 (1991) · Zbl 0713.11033 · doi:10.1007/BF01446595
[38] Langlands, R. P., On the functional equations satisfied by Eisenstein series (1976) · Zbl 0332.10018
[39] Mazur, B., Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math., 47, 33-186 (1978) (1977) · Zbl 0394.14008 · doi:10.1007/BF02684339
[40] Mazur, B., Modular forms and Fermat’s last theorem (Boston, MA, 1995), 243-311 (1997) · Zbl 0901.11015
[41] Mazur, B.; Wiles, A., Class fields of abelian extensions of \({\bf Q}\), Invent. Math., 76, 2, 179-330 (1984) · Zbl 0545.12005 · doi:10.1007/BF01388599
[42] Miyake, T., Modular forms (1989) · Zbl 0701.11014
[43] Mœglin, C.; Waldspurger, J.-L., Le spectre résiduel de \({\rm GL}(n)\), Ann. Sci. École Norm. Sup. (4), 22, 4, 605-674 (1989) · Zbl 0696.10023
[44] Raghavan, S.; Sengupta, J., A Dirichlet series for Hermitian modular forms of degree \(2\), Acta Arith., 58, 2, 181-201 (1991) · Zbl 0685.10022
[45] Ribet, K. A., A modular construction of unramified \(p\)-extensions of \(Q(\mu_p)\), Invent. Math., 34, 3, 151-162 (1976) · Zbl 0338.12003 · doi:10.1007/BF01403065
[46] Rubin, K., Euler systems, 147 (2000) · Zbl 0977.11001
[47] Schmidt, C.-G., \(p\)-adic measures attached to automorphic representations of \({\rm GL}(3)\), Invent. Math., 92, 3, 597-631 (1988) · Zbl 0656.10023 · doi:10.1007/BF01393749
[48] Serre, J.-P., Les Tendances Géom. en Algébre et Théorie des Nombres, 239-256 (1966) · Zbl 0148.41502
[49] Shimura, G., Confluent hypergeometric functions on tube domains, Math. Ann., 260, 3, 269-302 (1982) · Zbl 0502.10013 · doi:10.1007/BF01461465
[50] Shimura, G., Euler products and Eisenstein series, 93 (1997) · Zbl 0906.11020
[51] Shimura, G., Arithmeticity in the theory of automorphic forms, 82 (2000) · Zbl 0967.11001
[52] Skinner, C. M., Selmer groups (2004)
[53] Sturm, J., Special values of zeta functions, and Eisenstein series of half integral weight, Amer. J. Math., 102, 2, 219-240 (1980) · Zbl 0433.10015 · doi:10.2307/2374237
[54] Taylor, R.; Wiles, A., Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2), 141, 3, 553-572 (1995) · Zbl 0823.11030 · doi:10.2307/2118560
[55] Urban, E., Selmer groups and the Eisenstein-Klingen ideal, Duke Math. J., 106, 3, 485-525 (2001) · Zbl 1061.11027 · doi:10.1215/S0012-7094-01-10633-9
[56] Vatsal, V., Canonical periods and congruence formulae, Duke Math. J., 98, 2, 397-419 (1999) · Zbl 0979.11027 · doi:10.1215/S0012-7094-99-09811-3
[57] Vatsal, V., Special values of anticyclotomic \(L\)-functions, Duke Math. J., 116, 2, 219-261 (2003) · Zbl 1065.11048 · doi:10.1215/S0012-7094-03-11622-1
[58] Washington, L. C., Modular forms and Fermat’s last theorem (Boston, MA, 1995), 101-120 (1997) · Zbl 0928.12003
[59] Washington, L. C., Introduction to cyclotomic fields, 83 (1997) · Zbl 0966.11047
[60] Wiles, A., The Iwasawa conjecture for totally real fields, Ann. of Math. (2), 131, 3, 493-540 (1990) · Zbl 0719.11071 · doi:10.2307/1971468
[61] Wiles, A., Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2), 141, 3, 443-551 (1995) · Zbl 0823.11029 · doi:10.2307/2118559
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.