×

Asymptotics of the spectrum of the Laplace operator on Riemannian sol-manifolds in the adiabatic limit. (English. Russian original) Zbl 1213.58019

Sib. Math. J. 51, No. 2, 370-382 (2010); translation from Sib. Mat. Zh. 51, No. 2, 457-472 (2010).
Let \(M_A\) be a 2-torus bundle over \(S^1\) whose monodromy is a hyperbolic linear unimodular map \(A\). The manifold \(M_A\) is a compact quotient of the simply connected \(M_{\text{Sol}}\) model space, Sol being one of the 8 homogeneous 3-dimensional geometries classified by Thurston [see[P. Scott, Bull. Lond. Math. Soc. 15, 401–487 (1983; Zbl 0561.57001)]. The author considers a 1-d foliation \({\mathcal F}\) in \(M_A\) induced by a left invariant vector field on \(M_{\text{Sol}}\) and tangent to the 2-torus fibers: its adiabatic spectral geometry consists of the small \(\varepsilon\) asymptotics of the metric \(g_{{\mathcal F},\varepsilon}=g_{{\mathcal F}}+\varepsilon^{-2} g_{{\mathcal H}}\), where \({\mathcal H}\) is the plane distribution orthogonal to \({\mathcal F}\) and \(g=g_{{\mathcal F}}+g_{{\mathcal H}}\) is the decomposition of the metric \(g\) induced by the orthogonal sum \(TM_A={\mathcal F}\oplus{\mathcal H}\). In particular, we have \(\text{Vol}(M_A,g_{{\mathcal F},\varepsilon})=\text{Vol}(M_A,g)\varepsilon^{-2}\).
Let \(\sigma_{{\mathcal F},\varepsilon}\) be the Laplace-Beltrami operator \(\Delta_{\varepsilon}\) spectrum for the Riemannian manifold \((M_A,g_{{\mathcal F},\varepsilon})\). The main result is the following small \(\varepsilon\) Weyl type asymptotics
\[ \# (\sigma_{{\mathcal F},\varepsilon}\cap[1,t])=C_{\mathcal F} \frac{\text{Vol}(M_A,g)}{6\pi^2\varepsilon^2} {t^{3/2}}(1+o(1)),\quad \varepsilon \to 0^+, \]
where \(t\) is fixed and \(C_{\mathcal F}=1\) if \({\mathcal F} \) is one of the eigendirections of the hyperbolic map \(A\) and \(C_{\mathcal F}=3/2\) otherwise. In the first case, the foliation \({\mathcal F}\) is Riemannian and the asymptotics has been proved also by Y. A. Kordyukov [Math. Ann. 313, No. 4, 763–783 (1999; Zbl 0930.58017)].
Due to the geometry, the eigenvalue equation for the Laplacian \(\Delta_{\varepsilon}\) separates: its spectrum analysis is based on precise spectral asymptotics for the Mathieu hyperbolic operator \(-D_x^2+A\text{cosh}(x)\) on \(\mathbb R\).
These results extend previous work by A. V. Bolsinov, H. R. Dullin and A. P. Veselov [Commun. Math. Phys. 264, No. 3, 583–611 (2006; Zbl 1109.58027)] on the spectrum of the Sol manifold \(M_A\), whose geodesic flow properties have been studied by A. V. Bolsinov and I. A. Taimanov [Invent. Math. 140, No. 3, 639–650 (2000; Zbl 0985.37027)].

MSC:

58J37 Perturbations of PDEs on manifolds; asymptotics
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
47A55 Perturbation theory of linear operators
35P20 Asymptotic distributions of eigenvalues in context of PDEs
57R30 Foliations in differential topology; geometric theory
Full Text: DOI

References:

[1] Maslov V. P., Asymptotic Methods and Perturbation Theory [in Russian], Nauka, Moscow (1988). · Zbl 0653.35002
[2] Hagedorn G. and Joye A., ”Mathematical analysis of Born-Oppenheimer approximations,” in: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, Amer. Math. Soc., Providence, 2007, pp. 203–226 (Proc. Sympos. Pure Math.; 76, Part 1). · Zbl 1129.81095
[3] Witten E., ”Global gravitational anomalies,” Comm. Math. Phys., 100, No. 2, 197–229 (1985). · Zbl 0581.58038 · doi:10.1007/BF01212448
[4] Bismut J. M. and Freed D. S., ”The analysis of elliptic families. II. Dirac operators, eta invariants and the holonomy theorem,” Comm. Math. Phys., 107, No. 1, 103–163 (1986). · Zbl 0657.58038 · doi:10.1007/BF01206955
[5] Cheeger J., ”{\(\eta\)}-Invariants, the adiabatic approximation and conical singularities. I. The adiabatic approximation,” J. Differential Geometry, 26, No. 1, 175–221 (1987). · Zbl 0623.58021
[6] Bismut J. M. and Cheeger J., ”{\(\eta\)}-Invariants and their adiabatic limits,” J. Amer. Math. Soc., 2, No. 33–70, (1989). · Zbl 0671.58037
[7] Colbois B. and Courtois G., ”Petites valeurs propres et classe d’Euler des S 1-fibres,” Ann. Sci. Ecole Norm. Sup. (4), 33, No. 5, 611–645 (2000). · Zbl 0968.58001
[8] Dai X., ”Adiabatic limits, non-multiplicity of signature and the Leray spectral sequence,” J. Amer. Math. Soc., 4, No. 2, 265–321 (1991). · Zbl 0736.58039 · doi:10.1090/S0894-0347-1991-1088332-0
[9] Dai X., ”APS boundary conditions, eta invariants and adiabatic limits,” Trans. Amer. Math. Soc., 354, No. 1, 107–122 (2002). · Zbl 0984.58020 · doi:10.1090/S0002-9947-01-02863-X
[10] Mazzeo R. R. and Melrose R. B., ”The adiabatic limit, Hodge cohomology and Leray’s spectral sequence for a fibration,” J. Differential Geometry, 31, No. 1, 185–213 (1990). · Zbl 0702.58007
[11] Jammes P., ”Sur le spectre des fibres en tore qui s’effondrent,” Manuscripta Math., 110, No. 1, 13–31 (2003). · Zbl 1027.58006 · doi:10.1007/s00229-002-0291-y
[12] Jammes P., Effondrement, spectre et proriétés diophantiennes des flots Riemanniens [Preprint], math.DG/0505417, 2005.
[13] Bismut J. M., ”Local index theory and higher analytic torsion,” in: Proc. Intern. Congr. Math., Berlin, 1998. Doc. Math., 1998, Extra V. I, pp. 143–162. · Zbl 0982.58016
[14] Forman R., ”Spectral sequences and adiabatic limits,” Comm. Math. Phys., 168, No. 1, 57–116 (1995). · Zbl 0827.58001 · doi:10.1007/BF02099584
[15] Álvarez López J. and Kordyukov Yu. A., ”Adiabatic limits and spectral sequences for Riemannian foliations,” Geom. Funct. Anal., 10, No. 5, 977–1027 (2000). · Zbl 0965.57024 · doi:10.1007/PL00001653
[16] Kordyukov Yu. A., ”Adiabatic limits and spectral geometry of foliations,” Math. Ann., 313, No. 4, 763–783 (1999). · Zbl 0930.58017 · doi:10.1007/s002080050281
[17] Yakovlev A. A., ”Adiabatic limits on Heisenberg Riemannian manifolds,” Sb.: Math., 199, No. 2, 307–318 (2008). · Zbl 1157.58009 · doi:10.1070/SM2008v199n02ABEH003921
[18] Kordyukov Yu. A. and Yakovlev A. A., ”Adiabatic limits and the spectrum of the Laplacian on foliated manifolds,” in: C*-Algebras and Elliptic Theory. II. Trends Math., Birkhäuser, Basel, 2008, pp. 123–144. E-print arXiv:math/0703785. · Zbl 1159.58018
[19] Yakovlev A. A., ”Adiabatic limits on Riemannian Sol-manifolds,” Math. Notes, 84, No. 2, 297–299 (2008). · Zbl 1219.58015
[20] Bolsinov A. V., Dullin H. R., and Veselov A. P., ”Spectra of Sol-manifolds: arithmetic and quantum monodromy,” Comm. Math. Phys., 264, No. 3, 583–611 (2006). · Zbl 1109.58027 · doi:10.1007/s00220-006-1543-6
[21] Bolsinov A. V. and Taimanov I. A., ”Integrable geodesic flows with positive topological entropy,” Invent. Math., 140, No. 3, 639–650 (2000). · Zbl 0985.37027 · doi:10.1007/s002220000066
[22] Bolsinov A. V. and Taimanov I. A., ”Integrable geodesic flows on the suspensions of toric automorphisms,” Proc. Steklov Inst. Math., 231, 42–58 (2000). · Zbl 1005.53064
[23] Helffer B., Martinez A., and Robert D., ”Ergodicite et limite semi-classique,” Comm. Math. Phys., 109, No. 2, 313–326 (1987). · Zbl 0624.58039 · doi:10.1007/BF01215225
[24] Gordon C. S. and Wilson E. N., ”The spectrum of the Laplacian on Riemannian-Heisenberg manifolds,” Michigan Math. J., 33, No. 2, 253–271 (1986). · Zbl 0599.53038 · doi:10.1307/mmj/1029003354
[25] Whittaker E. T. and Watson G. N., A Course of Modern Analysis, Cambridge Univ. Press, Cambridge (1996). · Zbl 0951.30002
[26] Landau E., Elementary Number Theory, Chelsea, New York (1958). · Zbl 0079.06201
[27] Loo Keng Hua, Introduction to Number Theory, Springer-Verlag, Berlin and New York (1982). · Zbl 0483.10001
[28] Bateman H. and Erdélyi A., Higher Transcendental Functions. Vol. 3 [Russian translation], Nauka, Moscow (1967). · Zbl 0157.11901
[29] Reed M. and Simon B., Methods of Modern Mathematical Physics. Vol. 4 [Russian translation], Mir, Moscow (1981).
[30] Kordyukov Yu. A., ”Semiclassical spectral asymptotics on foliated manifolds,” Math. Nachr., 245, No. 1, 104–128 (2002). · Zbl 1022.58012 · doi:10.1002/1522-2616(200211)245:1<104::AID-MANA104>3.0.CO;2-E
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.