×

Rieffel deformation of group coactions. (English) Zbl 1213.46068

The Rieffel deformation is a method of deforming \(\text C^*\)-algebras. This tool can be also used for deforming locally compact groups. Let \(G\) be a locally compact group, \({\Gamma\subset G}\) an abelian subgroup and \(\Psi \) a continuous 2-cocycle on the dual group \({\Hat\Gamma}\). Let \(B\) be a \(\text C^*\)-algebra and \({\Delta_B\in{\text{Mor}}\,(B,B\otimes{\text C}_0(G))}\) a continuous right coaction. In this paper, the author uses the Rieffel deformation to construct a quantum group \({({\text C}_0(G)^{\tilde\Psi\otimes\Psi},\Delta^\Psi)}\) and the deformed \(\text C^*\)-algebra \(B^{\Psi}\). The author presents a construction of the continuous coaction \({\Delta_B^\Psi}\) of the quantum group \({({\text C}_0(G)^{\tilde\Psi\otimes\Psi},\Delta^\Psi)}\) on \(B^{\Psi}\), and he applies it to the action of the Lorentz group on the Minkowski space obtaining a \(\text C^*\)-algebraic quantum Minkowski space.

MSC:

46L65 Quantizations, deformations for selfadjoint operator algebras
22E43 Structure and representation of the Lorentz group
16T20 Ring-theoretic aspects of quantum groups

References:

[1] Kasprzak P.: Rieffel deformation via crossed products. J. Funct. Anal. 257(5), 1288–1332 (2009) · Zbl 1178.46069 · doi:10.1016/j.jfa.2009.05.013
[2] Kustermans J., Vaes S.: Locally compact quantum groups. Ann. Sci. Ec. Norm. Sup. 33(4), 837–934 (2000) · Zbl 1034.46508
[3] Landstad M.B.: Duality theory for covariant systems. Trans. AMS 248(2), 223–267 (1979) · Zbl 0397.46059 · doi:10.1090/S0002-9947-1979-0522262-6
[4] Landstad M.B.: Quantizations arising from abelian subgroups. Internat. J. Math. 5(6), 897–936 (1994) · Zbl 0853.17014 · doi:10.1142/S0129167X94000462
[5] Masuda T., Nakagami Y., Woronowicz S.L.: A C*-algebraic framework for quantum groups. Internat. J. Math. 14(9), 903–1001 (2003) · Zbl 1053.46050 · doi:10.1142/S0129167X03002071
[6] Napiórkowski K., Woronowicz S.L.: Operator theory in the C*-algebra framework. Rep. Math. Phys. 31(3), 353–371 (1992) · Zbl 0793.46039 · doi:10.1016/0034-4877(92)90025-V
[7] Podleś P.: Quantum Minkowski spaces. AIP Conf. Proc. 453, 97–106 (1998) · Zbl 0976.58004
[8] Pusz W., Woronowicz S.L.: A Quantum \({GL(2,\mathbb{C})}\) group at roots of unity. Rep. Math. Phys. 47, 431–462 (2001) · Zbl 1029.46101 · doi:10.1016/S0034-4877(01)80054-9
[9] Rieffel, M.A.: Deformation quantization for action of \({\mathbb{R}^d}\) . Mem. Am. Math. Soc. 106(506) (1993)
[10] Rieffel M.A.: Non-compact quantum groups associated with abelian subgroups. Commun. Math. Phys. 171(1), 181–201 (1995) · Zbl 0857.17014 · doi:10.1007/BF02103775
[11] Varilly J.C.: Quantum symmetry groups of noncommutative spheres. Commun. Math. Phys. 221(3), 511–523 (2001) · Zbl 0988.58004 · doi:10.1007/s002200100490
[12] Woronowicz S.L.: C*-algebras generated by unbounded elements. Rev. Math. Phys. 7(3), 481–521 (1995) · Zbl 0853.46057 · doi:10.1142/S0129055X95000207
[13] Woronowicz S.L.: From multiplicative unitaries to quantum groups. Internat. J. Math. 7(1), 127–149 (1996) · Zbl 0876.46044 · doi:10.1142/S0129167X96000086
[14] Woronowicz S.L.: Operator equalities related to the quantum E(2) group. Commun. Math. Phys. 144(2), 417–428 (1992) · Zbl 0753.47016 · doi:10.1007/BF02101100
[15] Woronowicz S.L.: Unbounded elements affiliated with C*-algebras and non-compact quantum groups. Commun. in Math. Phys. 136(2), 399–432 (1991) · Zbl 0743.46080 · doi:10.1007/BF02100032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.