×

Stationary waves to viscous heat-conductive gases in half-space: existence, stability and convergence rate. (English) Zbl 1213.35104

The authors study large-time behaviour of a solution to an initial-boundary value problem for the compressible Navier-Stokes equations with one spatial variable \(x\geq 0\). The gas is considered ideal, polytropic, compressible, viscous, and heat-conductive. The equations are written in Eulerian coordinates. Unknowns are density, velocity, and temperature. Initial distribution is asymptotically constant and positive. Dirichlet boundary conditions are given for \(x=0\), and the velocity there is negative. This corresponds to the outflow problem and guarantees well-posedness of the problem. Using the center manifold theory, the authors prove the existence of the stationary solution under smallness assumption of the boundary data. Also stability of this solution, provided that boundary data and initial perturbation are small in the Sobolev space, is proved. The convergence rate of the solution to the stationary solution is obtained.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35B35 Stability in context of PDEs
76N15 Gas dynamics (general theory)
35L60 First-order nonlinear hyperbolic equations
35L50 Initial-boundary value problems for first-order hyperbolic systems

References:

[1] Aoki, K.et al., Phys. Fluids A3, 2260 (1991), DOI: 10.1063/1.857907.
[2] Aoki, K.Sone, Y.Yamada, T., Phys. Fluids A2, 1867 (1990), DOI: 10.1063/1.857661.
[3] Carr, J., Applications of Centre Manifold Theory, 1981, Springer-Verlag · Zbl 0464.58001
[4] Friedman, A., Partial Differential Equations of Parabolic Type, 1964, Prentice Hall · Zbl 0144.34903
[5] Il’in, A. M.Oleĭnik, O. A., Dokl. Akad. Nauk SSSR120, 25 (1958). · Zbl 0082.08901
[6] Kagei, Y.Kawashima, S., Comm. Math. Phys.266, 401 (2006), DOI: 10.1007/s00220-006-0017-1.
[7] Kawashima, S.Kurata, K., J. Funct. Anal.257, 1 (2009), DOI: 10.1016/j.jfa.2009.04.003.
[8] Kawashima, S.Matsumura, A., Comm. Math. Phys.101, 97 (1985), DOI: 10.1007/BF01212358.
[9] Kawashima, S.Nishibata, S.Zhu, P., Comm. Math. Phys.240, 483 (2003). · Zbl 1038.35057
[10] Liu, T.-P.Matsumura, A.Nishihara, K., SIAM J. Math. Anal.29, 293 (1998), DOI: 10.1137/S0036141096306005.
[11] Matsumura, A., Methods Appl. Anal.8, 645 (2001). · Zbl 1161.76555
[12] Matsumura, A.Nishihara, K., Comm. Math. Phys.165, 83 (1994), DOI: 10.1007/BF02099739.
[13] Nakamura, T.Nishibata, S., SIAM J. Math. Anal.41, 1757 (2009), DOI: 10.1137/090755357.
[14] Nakamura, T.Nishibata, S.Yuge, T., J. Diff. Eqns.241, 94 (2007), DOI: 10.1016/j.jde.2007.06.016.
[15] Nishihara, K., Jpn. J. Appl. Math.2, 27 (1985), DOI: 10.1007/BF03167037.
[16] Nishikawa, M., Funkcial. Ekvac.41, 107 (1998). · Zbl 1140.35520
[17] Sone, Y.et al., Eur. J. Mech. B/Fluids17, 277 (1998), DOI: 10.1016/S0997-7546(98)80260-4.
[18] Nakamura, T.; Ueda, Y.; Kawashima, S., Convergence rate toward degenerate stationary wave for compressible viscous gases, Proc. of Int. Conf. on Nonlinear Analysis and Convex Analysis · Zbl 1227.35072
[19] Ueda, Y.; Nakamura, T.; Kawashima, S., Arch. Rational Mech. Anal.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.