×

Elimination orderings and localization in PBW algebras. (English) Zbl 1213.16039

Summary: We characterize the existence of elimination orderings for a given PBW algebra. Elimination orderings on \(\mathbb{N}^p\) are analyzed. A subclass of elimination orderings is considered to handle some Ore subsets and classical localizations.

MSC:

16Z05 Computational aspects of associative rings (general theory)
16S15 Finite generation, finite presentability, normal forms (diamond lemma, term-rewriting)
16S85 Associative rings of fractions and localizations
20M14 Commutative semigroups
16U20 Ore rings, multiplicative sets, Ore localization
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)

Citations:

Zbl 1172.20311
Full Text: DOI

References:

[1] José L. Bueso, J. Gómez Torrecillas, F.J. Lobillo, F.J. Castro, An introduction to effective calculus in quantum groups, in: Caenepeel, Stefaan et al. (Eds.), Rings, Hopf algebras, and Brauer groups. Proceedings of the Fourth Week on Algebra and Algebraic Geometry, SAGA-4, Antwerp and Brussels, Belgium, September 12-17, 1996, Marcel Dekker, New York, NY, Lect. Notes Pure Appl. Math. vol. 197, pp. 55-83, 1998.; José L. Bueso, J. Gómez Torrecillas, F.J. Lobillo, F.J. Castro, An introduction to effective calculus in quantum groups, in: Caenepeel, Stefaan et al. (Eds.), Rings, Hopf algebras, and Brauer groups. Proceedings of the Fourth Week on Algebra and Algebraic Geometry, SAGA-4, Antwerp and Brussels, Belgium, September 12-17, 1996, Marcel Dekker, New York, NY, Lect. Notes Pure Appl. Math. vol. 197, pp. 55-83, 1998. · Zbl 0898.17007
[2] Kandri-Rody, A.; Weispfenning, V., Non-commutative Gröbner bases in algebras of solvable type, J. Symb. Comput., 9, 1, 1-26 (1990) · Zbl 0715.16010
[3] Viktor Levandovskyy, Noncommutative computer Algebra for polynomial algebras: Gröbner bases, applications and implementation, Ph.D. thesis, Universität Kaiserslautern, 2005.; Viktor Levandovskyy, Noncommutative computer Algebra for polynomial algebras: Gröbner bases, applications and implementation, Ph.D. thesis, Universität Kaiserslautern, 2005. · Zbl 1094.16030
[4] G.-M. Greuel, V. Levandovskyy, H. Schönemann, Plural. A Singular 3.0 Subsystem for Computations with Non-commutative Polynomial Algebras, Centre for Computer Algebra, University of Kaiserslautern, 2006. Available from: <http://www.singular.uni-kl.de>.; G.-M. Greuel, V. Levandovskyy, H. Schönemann, Plural. A Singular 3.0 Subsystem for Computations with Non-commutative Polynomial Algebras, Centre for Computer Algebra, University of Kaiserslautern, 2006. Available from: <http://www.singular.uni-kl.de>.
[5] Viktor Levandovskyy, PBW bases, non-degeneracy conditions and applications. Buchweitz, Ragnar-Olaf et al. (Eds.), Representations of algebras and related topics. Providence, RI: American Mathematical Society (AMS), Fields Institute Communications vol. 45, 2005, pp. 229-246.; Viktor Levandovskyy, PBW bases, non-degeneracy conditions and applications. Buchweitz, Ragnar-Olaf et al. (Eds.), Representations of algebras and related topics. Providence, RI: American Mathematical Society (AMS), Fields Institute Communications vol. 45, 2005, pp. 229-246. · Zbl 1094.16030
[6] Viktor Levandovskyy, Intersection of ideals with non-commutative subalgebras, in: Proc. of the International Symposium on Symbolic and Algebraic Computation (ISSAC’06), ACM Press, 2006.; Viktor Levandovskyy, Intersection of ideals with non-commutative subalgebras, in: Proc. of the International Symposium on Symbolic and Algebraic Computation (ISSAC’06), ACM Press, 2006. · Zbl 1356.16046
[7] José L. Bueso, José Gómez-Torrecillas, Alain Verschoren, Algorithmic methods in non-commutative algebra, Applications to quantum groups, In: Mathematical Modelling: Theory and Applications vol. 17, Kluwer Academic Publishers, Dordrecht, 2003 (English).; José L. Bueso, José Gómez-Torrecillas, Alain Verschoren, Algorithmic methods in non-commutative algebra, Applications to quantum groups, In: Mathematical Modelling: Theory and Applications vol. 17, Kluwer Academic Publishers, Dordrecht, 2003 (English). · Zbl 1063.16054
[8] Lusztig, George, Quantum groups at roots of 1, Geom. Dedicata, 35, 1-3, 89-114 (1990) · Zbl 0714.17013
[9] C. De Concini, C. Procesi, Quantum groups, in: G. Zampieri et al. (Eds.), D-modules, representation theory, and quantum groups. Lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (CIME) held in Venezia, Italy, June 12-20, 1992, Springer-Verlag, Berlin, Lect. Notes Math. vol. 1565, pp. 31-140, 1993.; C. De Concini, C. Procesi, Quantum groups, in: G. Zampieri et al. (Eds.), D-modules, representation theory, and quantum groups. Lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (CIME) held in Venezia, Italy, June 12-20, 1992, Springer-Verlag, Berlin, Lect. Notes Math. vol. 1565, pp. 31-140, 1993. · Zbl 0795.17005
[10] Corrado De Concini, Victor G. Kac, Representations of quantum groups at roots of 1, Operator algebras, unitary representations, enveloping algebras, and invariant theory, Proc. Colloq. in Honour of J. Dixmier, Paris/Fr. 1989, Prog. Math. vol. 92, 1990, pp. 471-506.; Corrado De Concini, Victor G. Kac, Representations of quantum groups at roots of 1, Operator algebras, unitary representations, enveloping algebras, and invariant theory, Proc. Colloq. in Honour of J. Dixmier, Paris/Fr. 1989, Prog. Math. vol. 92, 1990, pp. 471-506. · Zbl 0738.17008
[11] Bueso, J. L.; Gómez-Torrecillas, J.; Lobillo, F. J., Re-filtering and exactness of the Gelfand-Kirillov dimension, Bull. Sci. Math., 125, 8, 689-715 (2001) · Zbl 1006.16023
[12] Bergman, George M., The diamond lemma for ring theory, Adv. Math., 29, 178-218 (1978), (English) · Zbl 0326.16019
[13] Lorenzo Robbiano, Term orderings on the polynomial ring, in: Bruno Buchberger (Ed.), Proceedings of EUROCAL’85, vol. 2, Lecture Notes in Computer Science, no. 204, Springer, 1985, pp. 513-517.; Lorenzo Robbiano, Term orderings on the polynomial ring, in: Bruno Buchberger (Ed.), Proceedings of EUROCAL’85, vol. 2, Lecture Notes in Computer Science, no. 204, Springer, 1985, pp. 513-517. · Zbl 0584.13016
[14] G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3.0, A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern, 2005. available from: http://www.singular.uni-kl.de.; G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3.0, A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern, 2005. available from: http://www.singular.uni-kl.de.
[15] V. Levandovskyy, F.J. Lobillo, O. Motsak, C. Rabelo, nctools.lib. A Singular 3.0 library with general tools for noncommutative algebras.; V. Levandovskyy, F.J. Lobillo, O. Motsak, C. Rabelo, nctools.lib. A Singular 3.0 library with general tools for noncommutative algebras.
[16] J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings. With the Cooperation of L. W. Small, Pure and Applied Mathematics, vol. XV, A Wiley-Interscience Publication, John Wiley & Sons, Chichester, 1987, 596p.; J.C. McConnell, J.C. Robson, Noncommutative Noetherian Rings. With the Cooperation of L. W. Small, Pure and Applied Mathematics, vol. XV, A Wiley-Interscience Publication, John Wiley & Sons, Chichester, 1987, 596p. · Zbl 0644.16008
[17] Bo Stenström, Rings of quotients, An introduction to methods of ring theory, Die Grundlehren der mathematischen Wissenschaften, Band 217, vol. VIII, Springer-Verlag, Berlin-Heidelberg-New York, 309pp.; Bo Stenström, Rings of quotients, An introduction to methods of ring theory, Die Grundlehren der mathematischen Wissenschaften, Band 217, vol. VIII, Springer-Verlag, Berlin-Heidelberg-New York, 309pp.
[18] José L. Bueso, J. Gómez-Torrecillas, F.J. Lobillo, F.J. Castro, Primality test in iterated Ore extensions, Commun. Algebra 29(3) (2001) 1357-1371.; José L. Bueso, J. Gómez-Torrecillas, F.J. Lobillo, F.J. Castro, Primality test in iterated Ore extensions, Commun. Algebra 29(3) (2001) 1357-1371. · Zbl 0991.16023
[19] Apel, J.; Lassner, W., An extension of Buchberger’s algorithm and calculations in enveloping fields of Lie algebras, J. Symb. Comput., 6, 2/3, 361-370 (1988) · Zbl 0663.68044
[20] Bueso, J. L.; Gómez-Torrecillas, J.; Lobillo, F. J., Homological computations in PBW modules, Alg. Rep. Theory, 4, 201-218 (2001) · Zbl 1054.16040
[21] Yamane, Hiroyuki, A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebras of type \(AN\), Publ. Res. Inst. Math. Sci., 25, 3, 503-520 (1989) · Zbl 0694.17007
[22] Li, H., Noncommutative Gröbner Bases and Filtered-graded Transfer (2002), Springer · Zbl 1050.16022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.