×

A Littlewood-Richardson rule for two-step flag varieties. (English) Zbl 1213.14088

The author proves a positive, geometric rule for expressing the structure constants of the cohomology ring of two-step flag varieties in terms of their Schubert basis. A corollary is a positive, geometric rule for expressing the structure constants of the small quantum cohomology ring of Grassmannians. He also shows a similar rule for computing the cohomology class of intersections of projections of Schubert varieties in partial flag manifolds.
The method of the paper is a combinatorial record-keeping of codimension 1 degenerations of subvarieties of Grassmannians and flag varieties. Degeneration methods to study the geometry of these varieties date back to at least Pieri. The challenge of this method is finding natural and canonical degeneration orders and finding the combinatorial objects to keep track of these. The paper under review contains such a choice (a new one), resulting in simple and effective rules. The combinatorial objects the author uses are called Mondrian tableau. They supply a convenient tool for recording the rank data for the intersection of two flags.
The author suggests that the algorithms presented in the paper apply in even more general settings than those shown in the paper.

MSC:

14M15 Grassmannians, Schubert varieties, flag manifolds
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
32M10 Homogeneous complex manifolds
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
Full Text: DOI

References:

[1] Bergeron, N., Sottile, F.: Schubert polynomials, the Bruhat order, and the geometry of flag manifolds. Duke Math. J. 95, 373–423 (1998) · Zbl 0939.05084 · doi:10.1215/S0012-7094-98-09511-4
[2] Bernstein, I.N., Gelfand, I.M., Gelfand, S.I.: Schubert cells and the cohomology of the spaces G/P. Russ. Math. Surv. 28(3), 1–26 (1973) · Zbl 0289.57024 · doi:10.1070/RM1973v028n03ABEH001557
[3] Bertram, A.: Quantum Schubert calculus. Adv. Math. 128, 289–305 (1997) · Zbl 0945.14031 · doi:10.1006/aima.1997.1627
[4] Buch, A.S.: Quantum cohomology of Grassmannians. Compos. Math. 137, 227–235 (2003) · Zbl 1050.14053 · doi:10.1023/A:1023908007545
[5] Buch, A.S., Kresch, A., Tamvakis, H.: Gromov–Witten invariants on Grassmannians. J. Am. Math. Soc. 16, 901–915 (2003) · Zbl 1063.53090 · doi:10.1090/S0894-0347-03-00429-6
[6] Coskun, I.: Degenerations of surface scrolls and the Gromov–Witten invariants of Grassmannians. J. Algebr. Geom. 15, 223–284 (2006) · Zbl 1105.14072
[7] Coskun, I.: A Littlewood–Richardson rule for partial flag varieties. Preprint · Zbl 1213.14088
[8] Coskun, I., Vakil, R.: Geometric positivity in the cohomology of homogeneous spaces and generalized Schubert calculus. To appear in Proceedings of the Summer Institute in Algebraic Geometry, Seattle 2005 · Zbl 1184.14080
[9] Fulton, W.: Young Tableaux. Lond. Math. Soc. Stud. Texts, vol. 35. Cambridge University Press, Cambridge (1997) · Zbl 0878.14034
[10] Fulton, W.: Intersection Theory, 2nd edn. Ergeb. Math. Grenzgeb., 3. Folge, vol. 2. Springer, Berlin (1998) · Zbl 0885.14002
[11] Fulton, W., Pandharipande, R.: Notes on stable maps and quantum cohomology. In: Algebraic Geometry – Santa Cruz 1995. Proc. Sympos. Pure Math., vol. 62, pp. 45–96. Am. Math. Soc., Providence, RI (1997) · Zbl 0898.14018
[12] Fulton, W., Pragacz, P.: Schubert varieties and degeneracy loci. Lect. Notes Math., vol. 1689. Springer, Berlin (1998) · Zbl 0913.14016
[13] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Interscience, New York (1978) · Zbl 0408.14001
[14] Kleiman, S.L.: The transversality of a general translate. Compos. Math. 28, 287–297 (1974) · Zbl 0288.14014
[15] Knutson, A., Tao, T.: Puzzles and (equivariant) cohomology of Grassmannians. Duke Math. J. 119, 221–260 (2003) · Zbl 1064.14063 · doi:10.1215/S0012-7094-03-11922-5
[16] Knutson, A., Tao, T., Woodward, C.: The honeycomb model of GL n (\(\mathbb{C}\)) tensor products. II. Puzzles determine facets of the Littlewood–Richardson cone. J. Am. Math. Soc. 17, 19–48 (2004) (electronic) · Zbl 1043.05111 · doi:10.1090/S0894-0347-03-00441-7
[17] Kogan, M.: RC-graphs and a generalized Littlewood–Richardson rule. Int. Math. Res. Not. 2001(15), 765–782 (2001) · Zbl 0994.05150 · doi:10.1155/S1073792801000393
[18] Vakil, R.: A geometric Littlewood–Richardson rule. Ann. Math. (2) 164, 371–421 (2006) (Appendix A written with A. Knutson) · Zbl 1163.05337 · doi:10.4007/annals.2006.164.371
[19] Vakil, R.: Schubert induction. Ann. Math. (2) 164, 489–512 (2006) · Zbl 1115.14043 · doi:10.4007/annals.2006.164.489
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.