×

Period map of a certain \(K3\) family with an \({\mathcal{S}}_{5}\)-action. (English) Zbl 1213.14070

This paper studies the period map of the family \(\{{\mathcal{X}}_t\}\), \(t=(t_0,t_1)\in{\mathbb{P}}^1\), of the quartic family of \(K3\) surfaces defined by \[ {\mathcal{X}}_t: x_1+\cdots+x_5= t_0(x_1^4+\cdots+x_5^4)+t_1(x_1^2+\cdots+x_5^2)^2=0 \] in \({\mathbb{P}}^4\) with homogeneous coordinates \((x_1:\cdots :x_5)\). This family admits a symplectic group action by the symmetric group \(S_5\), and in fact it is a maximal family of algebraic \(K3\) surfaces with an action of \(S_5\). The Picard number of a generic fiber is equal to \(19\), and the Gram matrix of the transcendental lattice \(T\) is given by \(\left( \begin{matrix} 4 & 1 & 0 \cr 1 & 4 & 0 \cr 0 & 0 & -20 \end{matrix} \right)\). The image of the period map of this family is a \(1\)-dimensional subdomain \(\Omega_T\) of the \(19\)-dimensional period domain (the bounded symmetric domain of type IV). Let \(\Omega_T^{\circ}\) be a connected component of \(\Omega_T\). Since \(O(T)\) has no cusp, there is a modular embedding \(i : \Omega_T^{\circ}\to {\mathbb{H}}_2\) to the Siegel upper half-plane \({\mathbb{H}}_2\) of genus \(2\). This modular embedding is constructed using the Kuga-Satake construction. The main result of this paper is to construct the inverse of the period map using automorphic forms of one variable on \(\Omega_T^{\circ}\). In fact, automorphic forms are constructed as the pull-backs of the forth power of theta constants of genus \(2\). Also relations among these autormorphic forms are found to obtain a uniformizing parameter of the Shimura curve \(O(T)\setminus \Omega_T\).

MSC:

14J28 \(K3\) surfaces and Enriques surfaces

References:

[1] DOI: 10.1098/rspa.1958.0181 · Zbl 0135.21301 · doi:10.1098/rspa.1958.0181
[2] Borel A., Ann. Scu. Norm. Sup. Pisa Cl. Sci. 8 (4) pp 1– (1981)
[3] Brandt H., Abh. Sächs. Akad. Wiss. Math.-Nat. Kl. pp 45– (1958)
[4] Burns D., Ann. Sci. Ec Norm. Sup. 8 (4) pp 235– (1975)
[5] DOI: 10.1007/BF01461467 · Zbl 0473.14017 · doi:10.1007/BF01461467
[6] Hashimoto K.-I., Osaka J. Math. 32 pp 533– (1995)
[7] DOI: 10.2748/tmj/1178225596 · Zbl 0838.11044 · doi:10.2748/tmj/1178225596
[8] DOI: 10.2307/2373172 · doi:10.2307/2373172
[9] DOI: 10.1112/S0024611504014984 · Zbl 1071.11042 · doi:10.1112/S0024611504014984
[10] DOI: 10.1215/S0012-7094-98-09217-1 · Zbl 0958.14025 · doi:10.1215/S0012-7094-98-09217-1
[11] DOI: 10.1353/ajm.1999.0040 · Zbl 0978.14043 · doi:10.1353/ajm.1999.0040
[12] Long D. D., Pure Appl. Math. Q. 2 pp 569– (2006)
[13] Morrison D. R., Progr. Math. 39 pp 303– (1983)
[14] DOI: 10.1007/BF01394352 · Zbl 0705.14045 · doi:10.1007/BF01394352
[15] Nikuiln V. V., Trans. Moscow Math. Soc. 38 pp 71– (1980)
[16] DOI: 10.1070/IM1980v014n01ABEH001060 · Zbl 0427.10014 · doi:10.1070/IM1980v014n01ABEH001060
[17] Ogg A. P., Progr. Math. 35 pp 277– (1983)
[18] DOI: 10.1112/S0010437X04001010 · Zbl 1076.14047 · doi:10.1112/S0010437X04001010
[19] Pjatecki-Sapiro I. I., Izv. Akad. Nauk SSSR Ser. Mat. 35 pp 530– (1971)
[20] Serre J.-P., Astérisque pp 46– (1977)
[21] DOI: 10.2307/1970604 · Zbl 0237.14009 · doi:10.2307/1970604
[22] Xiao G., Ann. Inst. Fourier (Grenoble) 46 pp 73– (1996)
[23] DOI: 10.1016/j.jpaa.2005.09.009 · Zbl 1103.14024 · doi:10.1016/j.jpaa.2005.09.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.