×

On the adjoint \(L\)-function of the \(p\)-adic \(\text{GSp}(4)\). (English) Zbl 1213.11110

Summary: We explicitly compute the adjoint \(L\)-function of those \(L\)-packets of representations of the group \(\text{GSp}(4)\) over a \(p\)-adic field of characteristic zero that contain non-supercuspidal representations. As an application we verify a conjecture of Gross and Prasad and Rallis in this case. The conjecture states that the adjoint \(L\)-function is holomorphic at \(s=1\) if and only if the \(L\)-packet contains a generic representation.

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols

References:

[1] W. Gan, S. Takeda, The local Langlands conjecture for \(\operatorname{GSp}(4)\), preprint, arXiv:0706.0952; W. Gan, S. Takeda, The local Langlands conjecture for \(\operatorname{GSp}(4)\), preprint, arXiv:0706.0952 · Zbl 1230.11063
[2] Gelbart, S.; Jacquet, H., A relation between automorphic representations of \(GL(2)\) and \(GL(3)\), Ann. Sci. École Norm. Sup., 11, 471-542 (1978) · Zbl 0406.10022
[3] Gross, B.; Prasad, D., On the decomposition of a representation of \(SO_n\) when restricted to \(SO_{n - 1}\), Canad. J. Math., 55, 5, 974-1002 (1992) · Zbl 0787.22018
[4] Jiang, D.; Soudry, D., The local converse theorem for \(SO(2 n + 1)\) and applications, Ann. of Math. (2), 157, 3, 743-806 (2003) · Zbl 1049.11055
[5] Jiang, D.; Soudry, D., Generic representations and local Langlands reciprocity law for \(p\)-adic \(SO_{2 n + 1}\), (Contributions to Automorphic Forms, Geometry, and Number Theory (Shalika Volume) (2004), Johns Hopkins Univ. Press: Johns Hopkins Univ. Press Baltimore, MD), 457-519 · Zbl 1062.11077
[6] Kudla, S. S., The local Langlands correspondence: The non-Archimedean case, (Motives. Motives, Proc. Sympos. Pure Math., vol. 55, part 2 (1994)), 111-155 · Zbl 0811.11072
[7] Roberts, B.; Schmidt, R., Local Newforms for \(GSp(4)\), Lecture Notes in Math., vol. 1918 (2007), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1126.11027
[8] Rohrlich, D., Elliptic curves and the Weil-Deligne group, (CRM Proc. Lecture Notes, vol. 4 (1994)), 125-157 · Zbl 0852.14008
[9] Sally, P. J.; Tadić, M., Induced representations and classifications for \(GSp(2, F)\) and \(Sp(2, F)\), Société Mathématique de France, Mémoire, 52, 75-133 (1993) · Zbl 0784.22008
[10] Tate, J., Number theoretic background, (Borel, A.; Casselman, W., Automorphic Forms, Representations, and \(L\)-Functions. Automorphic Forms, Representations, and \(L\)-Functions, Proc. Sympos. Pure Math., vol. 33, part 2 (1979)), 3-26 · Zbl 0422.12007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.