×

Ihara’s lemma for imaginary quadratic fields. (English) Zbl 1213.11101

Summary: An analogue over imaginary quadratic fields of a result in algebraic number theory known as Ihara’s lemma is established. More precisely, we show that for a prime ideal \(\mathfrak p\) of the ring of integers of an imaginary quadratic field \(F\), the kernel of the sum of the two standard \( \mathfrak p\)-degeneracy maps between the cuspidal sheaf cohomology \(H_!^1(Y_0\tilde M_0)^2\to H_!^1(Y_1,\tilde M_1)\) is Eisenstein. Here \(Y_{0}\) and \(Y_{1}\) are analogues over \(F\) of the modular curves \(Y_{0}(N)\) and \(Y_{0}(Np)\), respectively. To prove our theorem we use the method of modular symbols and the congruence subgroup property for the group SL\(_{2}(\mathbf Z[1/p])\) which is due to J. Mennicke [Invent. Math. 4, 202–228 (1967; Zbl 0189.02504)] and J.-P. Serre [Ann. Math. (2) 92, 489–527 (1970; Zbl 0239.20063)].

MSC:

11F32 Modular correspondences, etc.
11F25 Hecke-Petersson operators, differential operators (one variable)

References:

[1] Breuil, C.; Conrad, B.; Diamond, F.; Taylor, R., On the modularity of elliptic curves over Q: Wild 3-adic exercises, J. Amer. Math. Soc., 14, 4, 843-939 (2001), (electronic) · Zbl 0982.11033
[2] Diamond, F., Congruence primes for cusp forms of weight \(k \geqslant 2\), Astérisque, 196-197, 205-213 (1991), Curbes modulaires et courbes de Shimura, Orsay, 1987/1988 · Zbl 0783.11022
[3] Harder, G., Eisenstein cohomology of arithmetic groups. The case \(GL_2\), Invent. Math., 89, 1, 37-118 (1987) · Zbl 0629.10023
[4] Hida, Haruzo, Congruence of cusp forms and special values of their zeta functions, Invent. Math., 63, 2, 225-261 (1981) · Zbl 0459.10018
[5] Hida, H., Elementary Theory of \(L\)-Functions and Eisenstein Series, London Math. Soc. Stud. Texts, vol. 26 (1993), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0942.11024
[6] Ihara, Y., On modular curves over finite fields, (Discrete Subgroups of Lie Groups and Applications to Moduli, Internat. Colloq.. Discrete Subgroups of Lie Groups and Applications to Moduli, Internat. Colloq., Bombay, 1973 (1975), Oxford Univ. Press: Oxford Univ. Press Bombay), 161-202 · Zbl 0343.14007
[7] Khare, C., Congruences between cusp forms: The \((p, p)\) case, Duke Math. J., 80, 3, 631-667 (1995) · Zbl 0857.11021
[8] Mennicke, J., On Ihara’s modular group, Invent. Math., 4, 202-228 (1967) · Zbl 0189.02504
[9] Ribet, K. A., Congruence relations between modular forms, (Proceedings of the International Congress of Mathematicians, vols. 1, 2. Proceedings of the International Congress of Mathematicians, vols. 1, 2, Warsaw, 1983 (1984), PWN: PWN Warsaw), 503-514 · Zbl 0575.10024
[10] Serre, J.-P., Le problème des groupes de congruence pour \(SL_2\), Ann. of Math. (2), 92, 489-527 (1970) · Zbl 0239.20063
[11] Serre, J.-P., Arbres, amalgames, \(SL_2\), Astérisque, 46 (1977), avec un sommaire anglais, rédigé avec collaboration de Hyman Bass · Zbl 0302.20039
[12] Taylor, R., \(l\)-Adic representations associated to modular forms over imaginary quadratic fields, II, Invent. Math., 116, 1-3, 619-643 (1994) · Zbl 0823.11020
[13] Urban, E., Formes automorphes cuspidales pour \(GL_2\) sur un corps quadratique imaginaire. Valeurs spéciales de fonctions \(L\) et congruences, Compos. Math., 99, 3, 283-324 (1995) · Zbl 0846.11029
[14] Wiles, A., Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2), 141, 3, 443-551 (1995) · Zbl 0823.11029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.