×

Asymptotical stability analysis of linear fractional differential systems. (English) Zbl 1212.34009

Summary: The asymptotical stability of higher-dimensional linear fractional differential systems with Riemann-Liouville fractional order and Caputo fractional order are studied.

MSC:

34A08 Fractional ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Miller K S, Ross B. An introduction to the fractional calculus and fractional differential equations [M]. New York: John Wiley & Sons Inc, 1993. · Zbl 0789.26002
[2] Abel N H. Solution de quelques problèmes à l’aide d’intégrales définies [J]. Oeuvres Complètes, Gròndahl, Christiania, Norway, 1881, 1: 16–18.
[3] Skaar S B, Michel A N, Miller R K. Stability of viscoelastic control systems [J]. IEEE Trans Automat Contr, 1988, 33(4): 348–357. · Zbl 0641.93051 · doi:10.1109/9.192189
[4] Ichise M, Nagayanagi Y, Kojima T. An analog simulation of noninteger order transfer functions for analysis of electrode processes [J]. J Electroanal Chem, 1971, 33(2): 253–265.
[5] Sun H H, Abdelwahab A A, Onaral B. Linear approximation of transfer function with a pole of fractional power [J]. IEEE Trans Automat Contr, 1984, 29(5): 441–444. · Zbl 0532.93025 · doi:10.1109/TAC.1984.1103551
[6] Sugimoto N. Burgers equation with a fractional derivative: hereditary effects on nonlinear acoustic waves [J]. J Fluid Mech, 1991, 225(4): 631–653. · Zbl 0721.76011 · doi:10.1017/S0022112091002203
[7] Heaviside O. Electromagnetic theory [M]. New York: Chelsea, 1971. · JFM 30.0801.03
[8] Laskin N. Fractional market dynamics [J]. Phys A, 2000, 287(3): 482–492. · doi:10.1016/S0378-4371(00)00387-3
[9] Kusnezov D, Bulgac A, Dang G D. Quantum Lévy processes and fractional kinetics [J]. Phys Rev Lett, 1999, 82(6): 1136–1139. · doi:10.1103/PhysRevLett.82.1136
[10] Li C P, Peng G J. Chaos in Chen’s system with a fractional order [J]. Chaos Solitons & Fractals, 2004, 22(2): 443–450. · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[11] Montseny G. Diffusive representation of pseudo-differential time-operators [J]. ESAIM: Proceedings Fractional Differential Systems: Models, Methods and Applications, 1998, 5: 159–175. · Zbl 0916.93022
[12] Li Gen-guo, Zhu Zheng-you, Cheng Chang-jun. Dynamical stability of viscoelastic column with fractional derivative constitutive relation [J]. Applied Mathematics and Mechanics, 2001, 22(3): 294–303 (In Chinese). · Zbl 1116.74364 · doi:10.1023/A:1015506420053
[13] Samko S, Kilbas A, Marichev O. Fractional integrals and derivatives and some of their applications [M]. Minsk: Science and Technica, 1987. · Zbl 0617.26004
[14] Podlubny I. Fractional differential equations [M]. San Diego: Academic Press, 1999. · Zbl 0924.34008
[15] Kilbas A, Srivastava M, Trujillo J. Theory and applications of fractional differential equations [M]. North-Holland: Elsevier Press, 2006. · Zbl 1092.45003
[16] Ahmed E E, el-Sayed A M A, el-Saka H A A. Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J]. J Math Anal Appl, 2007, 325(1): 542–553. · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087
[17] Daftardar-Gejji V, Jafari H. Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives [J]. J Math Anal Appl, 2007, 328(2): 1026–1033. · Zbl 1115.34006 · doi:10.1016/j.jmaa.2006.06.007
[18] Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentation [J]. Frac Cal Appl Anal, 2002, 5(4): 367–386. · Zbl 1042.26003
[19] Heymans N, Podlubny I. Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives [J]. Rheologica Acta, 2006, 45(5): 765–772. · doi:10.1007/s00397-005-0043-5
[20] Li C P, Deng W H. Remarks on fractional derivatives [J]. Appl Math Comput, 2007, 187(2): 777–784. · Zbl 1125.26009 · doi:10.1016/j.amc.2006.08.163
[21] Luchko Y, Gorenflo R. An operational method for solving fractional differential equations with the Caputo derivatives [J]. Acta Math Vietnam, 1999, 24(2): 207–233. · Zbl 0931.44003
[22] Matignon D. Stability results for fractional differential equations with applications to control processing [C]// Computational Engineering in Systems and Application Multiconference, IMACS, IEEE-SMC, Lille, France. 1996, 2: 963–968.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.