×

Scheduling impatient jobs in a clearing system with insights on patient triage in mass casualty incidents. (English) Zbl 1211.90105

Summary: Motivated by the patient triage problem in emergency response, we consider a single-server clearing system in which jobs might abandon the system if they are not taken into service within their “lifetime.” In this system, jobs are characterized by their lifetime and service time distributions. Our objective is to dynamically determine the optimal or near-optimal order of service for jobs so as to minimize the total number of abandonments. We first show that if the jobs can be ordered in such a way that the job with the shortest lifetime (in the sense of hazard rate ordering) also has the shortest service time (in the sense of likelihood ratio ordering), then the optimal policy gives the highest priority to this “time-critical” job independently of the system state. For the case in which the jobs with shorter lifetimes have longer service times, we observed that the optimal policy generally has a complex structure that might depend on the type and number of jobs available. For this case, we provide partial characterizations of the optimal policy and obtain sufficient conditions under which a state-independent policy is optimal. Furthermore, we develop two state-dependent heuristic policies, and by means of a numerical study, we show that these heuristics perform well, especially when jobs abandon the system at a relatively faster rate when compared to service rates. Based on our analytical and numerical results, we develop several insights on patient triage in the immediate aftermath of a mass casualty event. For example, we conclude that in a worst-case scenario, where medical resources are overwhelmed with a large number of casualties who need immediate attention, it is crucial to implement state-dependent policies such as the heuristic policies proposed in this article.

MSC:

90B70 Theory of organizations, manpower planning in operations research
90B36 Stochastic scheduling theory in operations research
Full Text: DOI

References:

[1] DOI: 10.1007/BF01158765 · Zbl 0812.90053 · doi:10.1007/BF01158765
[2] Panwar, Journal of the Association for Computing Machinery 35 pp 832– (1988) · Zbl 0674.68023 · doi:10.1145/48014.48019
[3] DOI: 10.2307/3214023 · Zbl 0633.90026 · doi:10.2307/3214023
[4] DOI: 10.1287/moor.1070.0287 · Zbl 1159.90017 · doi:10.1287/moor.1070.0287
[5] DOI: 10.1046/j.1440-1622.1999.01644.x · doi:10.1046/j.1440-1622.1999.01644.x
[6] Levi, Prehospital and Disaster Medicine 17 pp 12– (2003) · doi:10.1017/S1049023X00000054
[7] Jiang, Journal of Systems and Software 19 pp 102– (1996)
[8] DOI: 10.1016/S0167-6377(02)00110-4 · Zbl 1030.90043 · doi:10.1016/S0167-6377(02)00110-4
[9] Hougaard, Analysis of multivariate survival data (2000) · Zbl 0962.62096 · doi:10.1007/978-1-4612-1304-8
[10] DOI: 10.2307/1427379 · Zbl 0617.90044 · doi:10.2307/1427379
[11] DOI: 10.1239/jap/1077134667 · Zbl 1123.90317 · doi:10.1239/jap/1077134667
[12] DOI: 10.1023/A:1010820112080 · Zbl 1017.90017 · doi:10.1023/A:1010820112080
[13] DOI: 10.1080/00207728308926528 · Zbl 0519.90044 · doi:10.1080/00207728308926528
[14] DOI: 10.1023/B:QUES.0000032805.73991.8e · Zbl 1057.60083 · doi:10.1023/B:QUES.0000032805.73991.8e
[15] Frykberg, The Journal of Trauma 53 pp 201– (2002)
[16] DOI: 10.1023/A:1015781818360 · Zbl 1010.90014 · doi:10.1023/A:1015781818360
[17] DOI: 10.1016/0377-2217(90)90088-S · Zbl 0713.90037 · doi:10.1016/0377-2217(90)90088-S
[18] DOI: 10.1016/0167-6377(86)90084-2 · Zbl 0633.90028 · doi:10.1016/0167-6377(86)90084-2
[19] DOI: 10.1214/aoap/1015345295 · Zbl 1015.60086 · doi:10.1214/aoap/1015345295
[20] DOI: 10.1109/9.106157 · Zbl 0739.60083 · doi:10.1109/9.106157
[21] DOI: 10.1109/9.29398 · Zbl 0693.90054 · doi:10.1109/9.29398
[22] DOI: 10.1023/A:1010956213680 · Zbl 0982.60097 · doi:10.1023/A:1010956213680
[23] Arnold, Prehospital and Disaster Medicine 18 pp 220– (2004) · doi:10.1017/S1049023X00001096
[24] DOI: 10.1023/A:1021804515162 · Zbl 1054.60100 · doi:10.1023/A:1021804515162
[25] DOI: 10.1287/opre.51.1.113.12793 · Zbl 1163.90523 · doi:10.1287/opre.51.1.113.12793
[26] Van Mieghem, Annals of Applied Probability 5 pp 808– (1995) · Zbl 0843.90047 · doi:10.1214/aoap/1177004706
[27] Rund, Triage (1981)
[28] DOI: 10.1023/A:1019117305543 · Zbl 0942.90010 · doi:10.1023/A:1019117305543
[29] DOI: 10.1016/0167-6911(88)90009-6 · Zbl 0658.90051 · doi:10.1016/0167-6911(88)90009-6
[30] Righter, Stochastic orders pp 381– (1994)
[31] Pinedo, Operations Research 31 pp 559– (1983)
[32] DOI: 10.1016/S0735-6757(03)00043-3 · doi:10.1016/S0735-6757(03)00043-3
[33] DOI: 10.2307/3212936 · Zbl 0427.90051 · doi:10.2307/3212936
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.