×

Interfacial phase change effects on the stability characteristics of thin viscoelastic liquid film down a vertical wall. (English) Zbl 1211.76057

Summary: Weakly nonlinear stability analysis of thin viscoelastic liquid film flowing down a vertical wall including the phase change effects at the interface has been investigated. A normal mode approach and the method of multiple scales are employed to carry out the linear stability solution and the nonlinear stability solution for the film flow system. The results show that both the supercritical stability and subcritical instability are possible for condensate, evaporating and isothermal viscoelastic film flow system. The stability characteristics of the viscoelastic film flow are strongly influenced by the phase change parameter. The condensate (evaporating) viscoelastic film is more stable (unstable) than the isothermal viscoelastic film and the effect of viscoelasticity is to destabilize the film flowing down a vertical wall.

MSC:

76E17 Interfacial stability and instability in hydrodynamic stability
76A10 Viscoelastic fluids
76A20 Thin fluid films
Full Text: DOI

References:

[1] Chang, H. C., Wave evolution on a falling film, Ann. Rev. Fluid Mech., 26, 103-136 (1994)
[2] Lin, C. C., The Theory of Hydrodynamic Stability (1955), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0068.39202
[3] Chandrasekar, S., Hydrodynamic and Hydromagnetic Stability (1961), Oxford University Press: Oxford University Press Oxford · Zbl 0142.44103
[4] Bankoff, S. G., Stability of liquid flow down a heated inclined plane, Int. J. Heat Mass Transfer, 14, 377-385 (1971)
[5] Marshall, E.; Lee, C. Y., Stability of condensate flow down a vertical wall, Int. J. Heat Mass Transfer, 16, 41-48 (1973) · Zbl 0257.76045
[6] Lin, S. P., Stability of a liquid down a heat incline plane, Lett. Heat Mass Transfer, 2, 361-370 (1975)
[7] Ünsal, M.; Thomas, W. C., Linear stability analysis of film condensation, J. Heat Transfer, 100, 629-634 (1978)
[8] Ünsal, M.; Thomas, W. C., Nonlinear stability of film condensation, J. Heat Transfer, 102, 483-488 (1980)
[9] Lin, S. P.; Wang, C. Y., Encyclopedia Fluid Mechanics (1986), Ed. Cheremisioff: Ed. Cheremisioff Gulf. Houston · Zbl 0666.76007
[10] Hwang, C. C.; Weng, C. I., Finite-amplitude stability analysis of liquid films down a vertical wall with and without interfacial phase change, Int. J. Multiphase Flows, 13, 803-814 (1987) · Zbl 0636.76047
[11] Ng, C. O.; Mei, C. C., Roll waves on a shallow layer of mud modelled as a power-law fluid, J. Fluid Mech., 263, 151-183 (1994) · Zbl 0841.76011
[12] Hung, C. I.; Tsai, J. S.; Chen, O. K., Nonlinear stability of the thin micropolar liquid film flowing down on a vertical plane, ASME Trans. J. Fluids Eng., 118, 498-505 (1996)
[13] Hung, C. I.; Chen, C. K.; Tsai, J. S., Weakly nonlinear stability analysis of condensate film flow down a vertical cylinder, Int. J. Heat Mass Transfer, 39, 2821-2829 (1996) · Zbl 0964.76507
[14] Cheng, P. J.; Chen, C. K.; Lai, H. Y., Nonlinear stability analysis of the thin micropolar liquid film flowing down on a vertical cylinder, ASME Trans. J. Fluids Eng., 123, 411-421 (2001)
[15] Joo, S. W.; Davis, S. H.; Bankoff, S. G., Long-wave instabilities of heated falling films: two-dimensional theory of uniform layers, J. Fluid Mech., 230, 117-146 (1991) · Zbl 0728.76047
[16] Gupta, A. S., Stability of a visco-elastic liquid film flowing down an inclined plane, J. Fluid Mech., 28, 17-28 (1967) · Zbl 0145.46303
[17] Lai, W., Stability of elastico-viscous liquid film flow down an inclined plane, Phys. Fluids, 10, 844-847 (1967) · Zbl 0149.44301
[18] Gupta, A. S.; Rai, L., Note on the stability of a visco-elastic liquid film flowing down an inclined plane, J. Fluid Mech., 33, 87-91 (1968) · Zbl 0155.53901
[19] Dandapat, B. S.; Gupta, A. S., Long waves on a layer of a visco-elastic fluid down an inclined plane, Rheol. Acta, 17, 492-499 (1978) · Zbl 0399.76005
[20] Spindler, B., Linear stability of liquid films with interfacial phase change, Int. J. Heat Mass Transfer, 25, 173-181 (1982) · Zbl 0517.76053
[21] Shaqfeh, E. S.G; Larson, R. G.; Fredrickson, The stability of gravity driven viscoelastic film flow at low to moderate Reynolds number, J. Non-Newtonian Fluid Mech., 31, 87-113 (1989) · Zbl 0659.76015
[22] Hwang, C. C.; Chen, J. L.; Wang, J. S.; Lin, J. S., Linear stability of power-law liquid film flows down an inclined plane, J. Phys. D: Appl. Phys., 27, 2297-2301 (1994)
[23] Dandapat, B. S.; Gupta, A. S., Solitary waves on the surface of a viscoelastic fluid running down an inclined plane, Rheol. Acta, 36, 135-143 (1997)
[24] Andersson, H. I.; Dahi, E. N., Gravity-driven flow of a viscoelastic liquid film along a vertical wall, J. Phys. D: Appl. Phys., 32, 1557-1562 (1999)
[25] Cheng, P. J.; Lai, H. Y.; Chen, C. K., Stability analysis of thin viscoelastic liquid film flowing down on a vertical wall, J. Phys. D: Appl. Phys., 33, 1674-1682 (2000)
[26] Lin, J. S.; Hwang, C. C., Finite amplitude long-wave instability of power-law liquid films, Int. J. Non-linear Mech., 35, 769-777 (2000) · Zbl 1006.76035
[27] Beard, D. W.; Walters, K., Elastico-viscous boundary-layer flow I. Two-dimensional flow over a stagnation point, Proc. Comb. Philos. Soc., 60, 667-674 (1964) · Zbl 0123.41601
[28] Joo, S. W., The stability and nonlinear flow developments of a viscoelastic draining film with shear thinning, J. Non-Newtonian Fluid Mech., 51, 125-140 (1994)
[29] Kang, F.; Chen, K. P., Nonlinear elastic instability of gravity-driven flow of a thin viscoelastic film down an inclined plane, J. Non-Newtonian Fluid Mech., 57, 243-252 (1995)
[30] Benney, D. J., Long waves on liquid film, J. Math. Phys., 45, 150-155 (1966) · Zbl 0148.23003
[31] Cheng, P. J.; Chen, C. K.; Lai, H. Y., Nonlinear stability analysis of thin viscoelastic film flow traveling down along a vertical cylinder, Nonlinear Dyn., 24, 305-332 (2001) · Zbl 1013.76033
[32] Chen, C. I.; Chen, C. K.; Yang, Y. T., Weakly nonlinear stability analysis of thin viscoelastic film flowing down on the outer surface of a rotating vertical cylinder, Int. J. Eng. Sci., 41, 1313-1336 (2003) · Zbl 1211.76056
[33] Li, Hydrodynamic entrance lengths of non-Newtonian laminar falling films, Can. J. Chem. Eng., 69, 383-385 (1991)
[34] Usha, R.; Uma, B., Weakly nonlinear stability analysis of condensate/evaporating power-law liquid film down an inclined plane, Trans. ASME J. Appl. Mech., 70, 916-923 (2004) · Zbl 1110.74720
[35] Barnes, H. A.; Hutton, J. F.; Walters, K., An Introduction to Rheology (1989), Elsevier: Elsevier Amsterdam · Zbl 0729.76001
[36] Edwards, D. A.; Brenner, H.; Wasan, D. T., Interfacial Transport Processes and Rheology (1991), Oxford Butterworth-Heinemann
[37] Jakob, M., Heat Transfer (1967), John Wiley: John Wiley New York, pp. 663-667
[38] Sparrow, E. M.; Gregg, J. L., A boundary layer treatment of laminar-film condensation, ASME J. Heat Transfer, 81, 13-18 (1959) · Zbl 0089.19401
[39] Ünsal, M.; Thomas, W. C., Perturbation solutions for laminar film condensation on non-isothermal walls, ASME J. Appl. Mech., 43, 367-368 (1976)
[40] Eckhaus, W., Studies in Nonlinear Stability Theory (1965), Springer: Springer Berlin · Zbl 0125.33101
[41] Walters, K., Non-Newtonian effects of an elastico-viscous liquid contained between coaxial cylinders (II), Quart. J. Mech. Appl. Math., 13, 444-461 (1960) · Zbl 0100.21501
[42] Coleman, B. D.; Noll, W., An approximation theorem for functionals, with applications in continuum mechanics, Arch. Rat. Mech. Anal., 6, 355-370 (1960) · Zbl 0097.16403
[43] Oldroyd, J. G., On the formation of rheological equations of state, Proc. R. Soc. A, 200, 523-541 (1950) · Zbl 1157.76305
[44] Markovitz, H.; Coleman, B. D., Advances in Applied Mechanics, vol. 8 (1964), Academic press · Zbl 0133.19205
[45] Burelbach, J. P.; Bankoffand, S. G.; Davis, S. H., Nonlinear stability of evaporating/condensing liquid films, J. Fluid Mech., 195, 463-494 (1988) · Zbl 0653.76035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.