×

Pointwise multipliers of Orlicz spaces. (English) Zbl 1211.46025

Let \((\Omega,\Sigma,\mu)\) be a complete \(\sigma\)-finite measure space and let \(L^0(\Omega)\) denote the class of measurable functions on \(\Omega\). If \((X,\|\cdot\|_X)\), \((Y,\|\cdot\|_Y)\) are Banach spaces of functions in \(L^0(\Omega)\), then \(M(X,Y)\), the space of pointwise multipliers, is defined by
\[ M(X,Y)= \{y\in L^0(W): xy\in Y\text{ for }x\in X\}, \]
with an associated functional
\[ \| y\|_{M(X,Y)}= \sup\{\| xy\|_Y: x\in X,\;\| x\|_X\leq 1\}. \]
If \(\Phi: [0,\infty)\to [0,\infty)\) is a Young (or an Orlicz) function so that \(\Phi(0)= 0\), \(\Phi\) is non-decreasing and convex, then the Orlicz space \(L^\Phi(\Omega)\) is defined by \(L^\Phi(\Omega)= \{f\in L^0(\Omega): I_\Phi(f/\lambda)< \infty\) for some \(\lambda\}\), where
\[ I_\Phi(f)= \int_\Omega\Phi(|f(t)|)\, d\mu(t), \]
with the norm \(\|\cdot\|_\Phi\) defined by \(\| f\|_\Phi= \inf\{\lambda> 0: I_\Phi(f/\lambda)\leq 1\}\). Statements of the main theorem of this paper indicate that: if \(\Phi, \Phi_1, \Phi_2\) are Young functions with inverses \(\Phi, \Phi^{-1}_1, \Phi^{-1}_2\), and there is a finite constant \(C> 0\) such that \(\Phi(u)\leq C\Phi^{-1}_1(u) \Phi^{-1}_2(u)\) for \(u> 0\), then \(\| f\|_{\Phi_2}\leq C\| f\|_{ML(\Phi_1,\Phi)}\), where \(ML(\Phi_1,\Phi)=M(L^{\Phi_1}, L^\Phi)\).
The introduction of the paper includes statements that the main theorem extends similar results of L.Maligranda and L.E.Persson [Indag.Math.51, No.3, 323–338 (1989; Zbl 0704.46018)].

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46B42 Banach lattices

Citations:

Zbl 0704.46018

References:

[1] Ando T.: On products of Orlicz spaces. Math. Ann. 140, 174–186 (1960) · Zbl 0091.27804 · doi:10.1007/BF01361143
[2] Calabuig J.M., Delgado O., Sánchez Pérez E. A.: Generalized perfect spaces. Indag. Math. (N.S.) 19, 359–378 (2008) · Zbl 1177.46018 · doi:10.1016/S0019-3577(09)00008-1
[3] Hudzik H., Maligranda L.: Amemiya norm equals Orlicz norm in general. Indag. Math. (N.S.) 11, 573–585 (2000) · Zbl 1010.46031 · doi:10.1016/S0019-3577(00)80026-9
[4] Krasnoselskiĭ M.A., Rutickiĭ Ja. B.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen (1961)
[5] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Mathematics 5, University of Campinas, Campinas SP 1989. · Zbl 0874.46022
[6] Maligranda L., Persson L.E.: Generalized duality of some Banach function spaces. Indag. Math. 51, 323–338 (1989) · Zbl 0704.46018
[7] Nakai E.: Pointwise multipliers. Memoirs of the Akashi College of Technology 37, 85–94 (1995)
[8] O’Neil R.: Fractional integration in Orlicz spaces. I, Trans. Amer. Math. Soc. 115, 300–328 (1965)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.