×

Some fundamental properties for duals of Orlicz spaces. (English) Zbl 1211.46010

Let \(\Phi: \mathbb R\to [0,\infty]\) be an Orlicz function, i.e., \(\Phi\) is convex, even, left continuous on \([0,\infty)\), vanishes only at zero, and is not identically equal to infinity on \((0,\infty)\). Given a \(\sigma\)-finite non-atomic measure space \((G,\Sigma, \mu)\), let \(L^0(\mu)\) denote the space of real valued \(\mu\)-measurable functions defined on \(G\). Then the Orlicz space \(L_\Phi= \{x \in L^0(\mu): \exists c>0\;I_\Phi(cx) = \int_G \Phi(cx(t)) \,d\mu(t) < \infty\}\) is a Banach space equipped with the standard Luxemburg or Orlicz norm.
The dual space \(L_\Phi^*\) is generated by the modular \(\rho^*(f)= I_\Psi(v) + \|\varphi\|\), where \(\Psi\) is the conjugate function to \(\Phi\), and \(f\in L_\Phi^*\) has a unique decomposition \(f = v + \varphi\) with \(v\in L_\Psi\) (which induces an integral functional) and \(\varphi\) is a singular functional. Several useful relations among \(I_\Phi\), \(\rho^*\) and the Luxemburg and Orlicz norms are presented. They are applied to characterize the extreme points of the dual space \(L_\Phi^*\) equipped with the Luxemburg norm. It is shown that a functional \(f = v + \varphi \in L_\Phi^*\) such that \(\|f\|=1\), \( 0\neq v \in L_\Psi, 0 \neq \varphi \in F\), where \(F\) is the set of singular functionals, is an extreme point if and only if 7.5mm
(i)
\(\rho^*(f) = 1\);
(ii)
\(\mu\{t\in G: v(t) \;\text{does not belong to the set of strict extreme points of}\;\Psi \} =0\);
(iii)
\(\varphi/\|\varphi\|\) is an extreme point of the unit ball of \(L_\Phi^*\).

MSC:

46B20 Geometry and structure of normed linear spaces
46B04 Isometric theory of Banach spaces
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46A80 Modular spaces
Full Text: DOI

References:

[1] L. Maligranda, Orlicz spaces and interpolations, in: Seminars in Mathematics 5. Universidade Estadual de Campinals, 1989.; L. Maligranda, Orlicz spaces and interpolations, in: Seminars in Mathematics 5. Universidade Estadual de Campinals, 1989. · Zbl 0874.46022
[2] Maligranda, L.; Wnuk, W., Landau type theorem for Orlicz spaces, Math. Z., 2008, 1, 57-63 (1991) · Zbl 0738.46013
[3] Musielak, J., Orlicz spaces and modular spaces, Lecture Notes Math., 1034, 1-222 (1983) · Zbl 0557.46020
[4] Musielak, J.; Orlicz, W., On modular spaces, Studia Math., 18, 49-65 (1959) · Zbl 0086.08901
[5] H. Nakano, Modulared semi-ordered spaces, Tokyo, 1950.; H. Nakano, Modulared semi-ordered spaces, Tokyo, 1950. · Zbl 0041.23401
[6] Krasnoselskiǐ, M. A.; Rutickiǐ, Ya. B., Convex Functions and Orlicz Spaces (1961), Groningen: Groningen Nordhoff, (translation) · Zbl 0095.09103
[7] Rao, M. M.; Ren, Z. D., Theory of Orlicz Spaces (1991), Marcel Dekker Inc.: Marcel Dekker Inc. New York, Basel, Hong Kong · Zbl 0724.46032
[8] Chen, S. T., Geometry of Orlicz spaces, Dissertationes Math., 356, 1-2004 (1996) · Zbl 1089.46500
[9] Orlicz, W., Über eine gewisse Klasse von Räumen von Typus B, Bull. Acad. Polonaise. A, 207-220 (1932) · Zbl 0006.31503
[10] Hudzik, H.; Maligaranda, L., Amemyia norm equals Orlicz norm in general, Indag. Math., 11.4, 573-585 (2000) · Zbl 1010.46031
[11] Chen, S. T.; Hudzik, H.; Wisła, M., Smooth points in Orlicz sequence spaces and geometry of the dual and the bidual of Orlicz spaces, Math. Jpn., 44, 2, 367-375 (1996) · Zbl 0892.46021
[12] Ando, T., Linear functionals on Orlicz space, Nieuw. Arch. Wiskd., 8, 1-16 (1960) · Zbl 0129.08001
[13] Kantorovich, L. V.; Akilov, G. P., Functional Analysis (Howard L. Silcock, Trans.) (1982), Pergamon Press: Pergamon Press Oxford, New York, Toronto, Sydney, Paris, Frankfurt · Zbl 0484.46003
[14] Cui, Y.; Hudzik, H.; Nowak, M.; Płuciennik, R., Some geometric properties in Orlicz sequence spaces equipped with Orlicz norm, J. Convex Anal., 6, 91-113 (1999) · Zbl 0954.46005
[15] Hudzik, H.; Zba̧szyniak, Z., Smoothness in Musielak-Orlicz spaces equipped with the Orlicz norm, Collect. Math., 48, 4-5-6, 543-561 (1997) · Zbl 0904.46018
[16] Chen, S. T.; Hudzik, H.; Kamińska, A., Support functionals and smooth points in Orlicz function spaces equipped with the Orlicz norm, Math. Jpn., 39, 2, 271-279 (1994) · Zbl 0804.46035
[17] Cui, Y. A.; Duan, L.; Hudzik, H.; Wisła, M., Basic theory of \(p\)-Amemiya norm in Orlicz spaces \((1 \leq p \leq \infty)\); extreme points and rotundity endowed with these norms, Nonlinear Anal., 69, 5-6, 1796-1816 (2008) · Zbl 1165.46005
[18] Wu, C.; Zhao, S.; Chen, J., On calculation of Orlicz norm and rotundity of Orlicz spaces, J. Harbin Inst. Tech., 2, 1-12 (1978), (in Chinese)
[19] Chen, S. T.; Cui, Y. A.; Hudzik, H., Isometric copies of \(\ell_1\) in Orlicz spaces equipped with the Orlicz norm, Proc. Amer. Math. Soc., 132, 2, 473-480 (2003) · Zbl 1044.46013
[20] Cui, Y. A.; Hudzik, H., On the uniform Opial property in some modular sequence spaces, Funct. Approx., 26, 93-102 (1998) · Zbl 0927.46004
[21] Cui, Y.; Hudzik, H.; Płuciennik, R., Extreme points and strong extreme points in Orlicz spaces equipped with the Orlicz norm, Z. Anal. Anwend., 22.4, 789-817 (2003) · Zbl 1060.46020
[22] Hudzik, H.; Wisła, M., On extreme points of Orlicz spaces with Orlicz norm, Collect. Math., 44, 135-149 (1993) · Zbl 0838.46019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.