×

Genus two curves with quaternionic multiplication and modular Jacobian. (English) Zbl 1211.11071

This paper makes further progress on the following problem: given an irreducible abelian surface \(A\) over a number field, determine explicitly all the genus 2 curves whose Jacobian is isomorphic to \(A\). The authors studied this problem for irreducible principally polarized abelian surfaces in [E. González-Jiménez, J. González and J. Guàrdia, “Computations on modular Jacobian surfaces”, Lect. Notes Comput. Sci. 2369, 189–197 (2002; Zbl 1055.11038)]. In [J. González, J. Guàrdia and V. Rotger, “Abelian surfaces of \(\text{GL}_{2}\)-type as Jacobians of curves”, Acta Arith. 116, No. 3, 263–287 (2005; Zbl 1108.14032)], they developed the theoretical results related to this problem for irreducible polarized abelian surfaces, focusing on nonprincipal polarizations. In both cases, they applied their ideas to modular abelian surfaces, since the discovery of new algorithms to describe the Jacobians of modular curves makes it possible to generate explicit examples. Unfortunately, the numerical nature of these algorithms leads only to numerically-tested examples. In the paper under review, the authors discuss the case of abelian surfaces with quaternionic multiplication, whose rich endomorphism algebra allows for the combined application of additional well-known techniques. More specifically, a method is described for determining all the isomorphism classes of principal polarizations of the modular abelian surfaces \(A_{f}\) with quaternionic multiplication attached to a normalized newform \(f\) without complex multiplication. Then an example is given of a surface \(A_{f}\) with quaternionic multiplication for which the authors find numerically a curve \(C\) whose Jacobian is \(A_{f}\) up to numerical approximation, and then prove that it has quaternionic multiplication and is in fact isogenous to \(A_{f}\).

MSC:

11G10 Abelian varieties of dimension \(> 1\)
11G18 Arithmetic aspects of modular and Shimura varieties

Software:

Magma

References:

[1] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. · Zbl 0898.68039
[2] Jean-Benoît Bost and Jean-François Mestre, Moyenne arithmético-géométrique et périodes des courbes de genre 1 et 2, Gaz. Math. 38 (1988), 36 – 64 (French). · Zbl 0682.14031
[3] N. Bruin, V. Flynn, J. González, and V. Rotger, On finiteness conjectures for modular quaternion algebras, Math. Proc. Camb. Philos. Soc., 141 (2006), no. 3,409-468.
[4] Henri Carayol, Sur les représentations \?-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409 – 468 (French). · Zbl 0616.10025
[5] J. W. S. Cassels and E. V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, London Mathematical Society Lecture Note Series, vol. 230, Cambridge University Press, Cambridge, 1996. · Zbl 0857.14018
[6] J. González, J. Guàrdia, and V. Rotger, Abelian surfaces of \( {\mathrm GL}_ 2\)-type as Jacobians of curves, Acta Arith. 116 (2005), no. 3, 263-287. · Zbl 1108.14032
[7] E. González-Jiménez, J. González, and J. Guàrdia, Computations on modular Jacobian surfaces, Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 189-197. · Zbl 1055.11038
[8] Jordi Guàrdia, Jacobian nullwerte and algebraic equations, J. Algebra 253 (2002), no. 1, 112 – 132. · Zbl 1054.14041 · doi:10.1016/S0021-8693(02)00049-2
[9] Chandrashekhar Khare, Serre’s modularity conjecture: the level one case, Duke Math. J. 134 (2006), no. 3, 557 – 589. · Zbl 1105.11013 · doi:10.1215/S0012-7094-06-13434-8
[10] J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177 – 190. · Zbl 0249.14012 · doi:10.1007/BF01425446
[11] K. A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no. 1, 43-62. · Zbl 0421.14008
[12] V. Rotger, Quaternions, polarization and class numbers, J. Reine Angew. Math. 561 (2003), 177-197. · Zbl 1094.11022
[13] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971, Kanô Memorial Lectures, No. 1. · Zbl 0221.10029
[14] G. Shimura, On the factors of the jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523-544. · Zbl 0266.14017
[15] Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). · Zbl 0422.12008
[16] André Weil, Zum Beweis des Torellischen Satzes, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa. 1957 (1957), 33 – 53 (German). · Zbl 0079.37002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.