×

Width of shape resonances for non globally analytic potentials. (English) Zbl 1210.81037

Summary: We consider the semiclassical Schrödinger operator with a well in an island potential, on which we assume smoothness only, except near infinity. We give the asymptotic expansion of the imaginary part of the shape resonance at the bottom of the well. This is a generalization of the result by B. Helffer and J. Sjöstrand [Mém. Soc. Math. Fr., Nouv. Sér. 24/25, 228 p. (1986; Zbl 0631.35075)] in the globally analytic case. We use an almost-analytic extension in order to continue the WKB solution coming from the well beyond the caustic set, and, for the justification of the accuracy of this approximation, we develop some refined microlocal arguments in \(h\)-dependent small regions.

MSC:

81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
35C20 Asymptotic expansions of solutions to PDEs
35P20 Asymptotic distributions of eigenvalues in context of PDEs
35P25 Scattering theory for PDEs
35B34 Resonance in context of PDEs
35J10 Schrödinger operator, Schrödinger equation
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

Citations:

Zbl 0631.35075

References:

[1] H. Baklouti and M. Mnif, Location of resonances generated by degenerate potential barrier, Electron. J. Qual. Theory Differ. Equ., 2006, No.,18, 11 pp (electronic). · Zbl 1115.35092
[2] J.-F. Bony and L. Michel, Microlocalization of resonant states and estimates of the residue of the scattering amplitude, Comm. Math. Phys., 246 (2004), 375-402. · Zbl 1062.35053 · doi:10.1007/s00220-004-1050-6
[3] P. Briet, J.-M. Combes and P. Duclos, On the location of resonances for Schrödinger operators in the semiclassical limit, II, Barrier top resonances, Comm. Partial Differential Equations, 12 (1987), 201-222. [Erratum: Comm. Partial Differential Equations, 13 (1988), 377-381]. · Zbl 0622.47047 · doi:10.1080/03605308708820488
[4] N. Burq, Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math., 124 (2002), 677-735. · Zbl 1013.35019 · doi:10.1353/ajm.2002.0020
[5] C. Cancelier, A. Martinez and T. Ramond, Quantum resonances without analyticity, Asymptotic Analysis, 44 (2005), 47-74. · Zbl 1095.35015
[6] C. Fernandez and R. Lavine, Lower bounds for resonance width in potential and obstacle scattering, Comm. Math. Phys., 128 (1990), 263-284. · Zbl 0712.35072 · doi:10.1007/BF02108782
[7] S. Fujiie, A. Lahmar-Benbernou and A. Martinez, Semiclassical complex interactions at a non-analytic turning point, RIMS Kokyuroku Bessatsu, preprint 2008. · Zbl 1290.81036
[8] C. Gérard and J. Sjöstrand, Semiclassical resonances generated by a closed trajectory of hyperbolic type, Comm. Math. Phys., 108 (1987), 391-421. · Zbl 0637.35027 · doi:10.1007/BF01212317
[9] V. Guillemin and S. Sternberg, Geometric Asymptotics, Amer. Math. Soc. Survey, 14 (1977). · Zbl 0364.53011
[10] E. Harrel, General lower bounds for resonances in one dimension, Comm. Math. Phys., 86 (1982), 221-225. · Zbl 0507.34024 · doi:10.1007/BF01206011
[11] B. Helffer and A. Martinez, Comparaison entre les diverses notions de resonances, Helv. Phys. Acta, 60 (1987), 992-1003.
[12] B. Helffer and J. Sjöstrand, Résonances en limite semiclassique, Bull. Soc. Math. France, Mémoire, 24 /25 (1986). · Zbl 0631.35075
[13] B. Helffer and J. Sjöstrand, Multiple wells in the semi-classical limit I, Comm. Partial Differential Equations, 9 (1984), 337-408. · Zbl 0546.35053 · doi:10.1080/03605308408820335
[14] P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory with Applications to Schrödinger Operators, Applied Mathematical Sciences, 113 , Springer-Verlag, New York, 1996. · Zbl 0855.47002
[15] W. Hunziker, Distortion analyticity and molecular resonance curves, Ann. Inst. Henri Poincaré, Phys. Theor., 45 (1986), 339-358. · Zbl 0619.46068
[16] A. Lahmar-Benbernou and A. Martinez, On Helffer-Sjöstrand’s theory of resonances, Int. Math. Res. Notices, 13 (2001), 697-717. · Zbl 1027.35171 · doi:10.1155/S1073792802104053
[17] A. Martinez, Introduction to Semiclassical and Microlocal Analysis, Springer, New-York, (2002). · Zbl 0994.35003
[18] A. Martinez, Resonance Free Domains for Non Globally Analytic Potentials, Ann. Henri Poincaré, 4 (2002), 739-756. [Erratum: Ann. Henri Poincaré, 8 (2007), 1425-1431]. · Zbl 1026.81012 · doi:10.1007/s00023-002-8634-5
[19] A. Martinez, Estimations de l’effet tunnel pour le double puits II - Etats hautement excités, Bull. Soc. Math. France, 116 (1988), 199-229. · Zbl 0666.35069
[20] A. Melin and J. Sjöstrand, Fourier integral operators with complex valued phase functions, Lecture Notes in Math., 459 , Springer, 1974, pp.,120-223. · Zbl 0306.42007 · doi:10.1007/BFb0074195
[21] J. Milnor, Morse Theory, Princeton University Press, 1963.
[22] B. Simon, Semiclassical Limit of Low Lying Eigenvalues I - Non Degenerate minima, Ann. de l’I.H.P., 38 (1983), 295-307. · Zbl 0526.35027
[23] J. Sjöstrand, Singularités analytiques microlocales, Astérisque, 95 (1982).
[24] J. Sjöstrand, Semiclassical resonances generated by nondegenerate critical points, Pseudodifferential operators (Oberwolfach, 1986), Lecture Notes in Math., 1256 , Springer, Berlin, 1987, pp.,402-429.
[25] G. Vodev, Exponential bounds of the resolvent for a class of noncompactly supported perturbations of the Laplacian, Mth. Res. Letters, 7 (2000), 287-298. · Zbl 0960.35021 · doi:10.4310/MRL.2000.v7.n3.a4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.