×

Approximate method for eigensensitivity analysis of a defective matrix. (English) Zbl 1210.65087

Summary: Based on the exact modal expansion method, an arbitrary high-order approximate method is developed for calculating the second-order eigenvalue derivatives and the first-order eigenvector derivatives of a defective matrix. The numerical example shows the validity of the method. If the different eigenvalues \(\mu (1),\dots ,\mu (q)\) of the matrix are arranged so that |\(\mu (1)|\leq \cdots \leq |\mu (q)\)| and satisfy the condition that |\(\mu (q_{1})|<|\mu (q_{1}+1)\)| for some \(q_{1}<q\), and if the approximate method only uses the left and right principal eigenvectors associated with \(\mu (1),\dots ,\mu (q_{1})\), then associated with \(\mu (h)(h\leq q_{1})\) the errors of the eigenvalue and eigenvector derivatives by the \(p\)th-order approximate method are nearly proportional to |\(\mu (h)/\mu (q_{1}+1)|^{p+1}\).

MSC:

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
Full Text: DOI

References:

[1] Luongo, A., Free vibration and sensitivity analysis of a defective two degree-of-freedom system, AIAA J., 33, 1, 120-127 (1995) · Zbl 0824.70013
[2] Luongo, A., Eigensolutions of perturbated nearly defective matrices, J. Sound Vib., 185, 3, 377-395 (1995) · Zbl 1049.70645
[3] Nelson, R. B., Simplified calculation of eigenvector derivatives, AIAA J., 14, 9, 1201-1205 (1976) · Zbl 0342.65021
[4] Ojalvo, I. U., Efficient computation of modal sensitivities for systems with repeated frequencies, AIAA J., 26, 3, 361-366 (1988) · Zbl 0682.73043
[5] Mills-Curran, W. C., Calculation of eigenvector derivatives for structures with repeated eigenvalues, AIAA J., 26, 7, 867-871 (1988) · Zbl 0665.73069
[6] Dailey, R. L., Eigenvector derivatives with repeated eigenvalues, AIAA J., 27, 4, 486-491 (1989)
[7] Friswell, M. I., Calculation of 2nd-order and higher-order eigenvector derivatives, J. Guid. Control Dyn., 18, 4, 919-921 (1995) · Zbl 0847.73029
[8] Friswell, M. I., The derivatives of repeated eigenvalues and their associated eigenvectors, J. Vib. Acoust. Trans. ASME, 118, 3, 390-397 (1996)
[9] Lee, I. W.; Jung, G. H.; Lee, J. W., Numerical method for sensitivity analysis of eigensystems with non-repeated and repeated eigenvalues, J. Sound Vibration, 195, 1, 17-32 (1996) · Zbl 1235.74363
[10] Lee, I. W.; Jung, G. H., An efficient algebraic method for the computation of natural frequency and modal shape sensitivities. 1. Distinct natural frequencies, Comput. Struct., 62, 3, 429-435 (1997) · Zbl 0912.73080
[11] Lee, I. W.; Jung, G. H., An efficient algebraic method for the computation of natural frequency and modal shape sensitivities. 2. Multiple natural frequencies, Comput. Struct., 62, 3, 437-443 (1997) · Zbl 0912.73080
[12] Wei, F. S.; Zhang, D. W., Eigenvector derivatives with repeated eigenvalues using generalized inverse technique, AIAA J., 34, 10, 2206-2209 (1996) · Zbl 0900.70251
[13] Lee, I. W.; Kim, D. O.; Jung, G. H., Natural frequency and modal shape sensitivities of damped systems. Part I. Distinct natural frequencies, J. Sound Vibration, 223, 3, 399-412 (1999)
[14] Lee, I. W.; Kim, D. O.; Jung, G. H., Natural frequency and modal shape sensitivities of damped systems. Part II. Multiple natural frequencies, J. Sound Vibration, 223, 3, 413-424 (1999)
[15] Choi, K. M.; Jo, H. K.; Kim, W. H.; Lee, I. W., Sensitivity analysis of non-conservative eigensystems, J. Sound Vibration, 274, 3-5, 997-1011 (2004)
[16] Choi, K. M.; Cho, S. W.; Ko, M. G.; Lee, I. W., Higher order eigensensitivity analysis of damped systems with repeated eigenvalues, Comput. Struct., 82, 1, 63-69 (2004)
[17] Liu, J. K., Universal perturbation technique for analysis of non-self-adjoint system, AIAA J., 38, 6, 1035-1039 (2000)
[18] Adhikaris, S.; Friswell, M. I., Calculation of eigensolutions derivatives for nonviscously damped systems using Nelson’s methods, AIAA J., 44, 8, 1799-1806 (2006)
[19] Guedria, N.; Smaoui, H.; Chouchane, M., A direct algebraic for eigensolutions sensitivity computation of damped asymmetric systems, Internat. J. Numer. Methods Engrg., 68, 6, 674-689 (2006) · Zbl 1128.74015
[20] Guedria, N.; Chouchane, M.; Smaoui, H., Second-order eigensensitivity analysis of asymmetric damped systems using nelson’s method, J. Sound Vibration, 300, 3-5, 974-992 (2007)
[21] Luongo, A., Eigensolutions sensitivity for nonsymmetric matrices with repeated eigenvalues, AIAA J., 31, 7, 1321-1328 (1993) · Zbl 0783.65035
[22] Zhang, Z. Y.; Zhang, H. S., Eigensensitivity analysis of a defective matrix, AIAA J., 39, 3, 473-479 (2001)
[23] Zhang, Z. Y.; Zhang, H. S., Higher-order eigensensitivity analysis of a defective matrix, AIAA J., 40, 4, 751-757 (2002)
[24] Zhang, Z. Y.; Zhang, H. S., Eigensensitivity analysis of a defective matrix with zero first-order eigenvalue derivatives, AIAA J., 42, 1, 114-123 (2004)
[25] Fox, R. L.; Kapoor, M. P., Rates of change of eigenvalues and eigenvectors, AIAA J., 6, 12, 2426-2429 (1968) · Zbl 0181.53003
[26] Murthy, D. V.; Haftka, R. T., Derivatives of eigenvalues and eigenvectors for a general complex matrix, Internat. J. Numer. Methods Engrg., 26, 2, 293-311 (1988) · Zbl 0637.65030
[27] Juang, J. N.; Chaemmaghami, P.; Lim, K. B., Eigenvalue and eigenvector derivatives of a nondefective matrix, J. Guid. Control Dyn., 12, 4, 480-486 (1989) · Zbl 0709.65029
[28] Bernard, M. L.; Bronowick, A. J., Modal expansion method for eigensensitivity with repeated roots, AIAA J., 32, 7, 1500-1506 (1994) · Zbl 0810.73039
[29] Zhang, D. W.; Wei, F. S., Computation of eigenvector derivatives with repeated eigenvalues using a complete modal space, AIAA J., 33, 9, 1749-1753 (1995) · Zbl 0868.73046
[30] Adhikari, S.; Friswell, M. I., Eigenderivative analysis of asymmetric non-conservative systems, Internat. J. Numer. Methods Engrg., 51, 6, 709-733 (2001) · Zbl 0992.70016
[31] Adhikari, S., Derivative of eigensolutions of non-viscously damped linear system, AIAA J., 49, 10, 2061-2069 (2002)
[32] Zhang, Z. Y.; Zhang, H. S., Calculation of eigenvalue and eigenvector derivatives of a defective matrix, Appl. Math. Comput., 176, 7-26 (2006) · Zbl 1093.65039
[33] Zhang, Z. Y., A development of modal expension method for eigensensitivity analysis of a defective matrix, Appl. Math. Comput., 188, 1995-2019 (2007) · Zbl 1121.65040
[34] Wang, B. P., Improved approximate methods for computing eigenvector derivatives in structure dynamics, AIAA J., 29, 6, 1018-1020 (1991)
[35] Zhang, O. Q.; Zerva, A., Iterative method for calculating derivatives of eigenvectors, AIAA J., 34, 5, 1088-1090 (1996) · Zbl 0894.73223
[36] Zhang, O. Q.; Zerva, A., Accelerated iterative method for calculating eigenvector derivatives, AIAA J., 35, 2, 340-348 (1997) · Zbl 0888.73080
[37] Zheng, Q. H., Highly accurate modal method for calculating eigenvector derivatives in viscous damping systems, AIAA J., 33, 4, 746-751 (1995) · Zbl 0826.73037
[38] Kim, Y.; Lee, S.; Junkins, J. L., Eigenvector derivatives for mechanical 2nd-order systems, J. Guid. Control Dyn., 18, 4, 899-906 (1995) · Zbl 0833.73075
[39] Zhao, Y. Q.; Liu, Z. S.; Chen, S. H.; Zhang, G. Y., An accurate modal truncation method for eigenvector derivatives, Comput. Struct., 73, 6, 609-614 (1999) · Zbl 0955.74516
[40] Moon, Y. J.; Kim, B. W.; Ko, M. G.; Lee, I. W., Modfied modal methods for calculating eigenpair sensitivity of asymmetric damped system, Internat. J. Numer. Methods Engrg., 60, 11, 1847-1860 (2004) · Zbl 1060.70511
[41] Gear, C. W., A simple set of test matrices for eigenvalue programs, Math. Comp., 23, 105, 119-125 (1969) · Zbl 0182.49101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.