×

Variances are not always nuisance parameters. (English) Zbl 1210.62147

Summary: In classical problems, e.g., comparing two populations, fitting a regression surface, etc., variability is a nuisance parameter. The term “nuisance parameter” is meant here in both the technical and the practical sense. However, there are many instances where understanding the structure of variability is just as central as understanding the mean structure. The purpose of this article is to review a few of these problems. I focus in particular on two issues: (a) the determination of the validity of an assay; and (b) the issue of the power for detecting health effects from nutrient intakes when the latter are measured by food frequency questionnaires. I will also briefly mention the problems of variance structure in generalized linear mixed models, robust parameter designs in quality technology, and signals in microarrays. In these and other problems, treating variance structure as a nuisance instead of a central part of the modeling effort not only leads to inefficient estimation of means, but also to misleading conclusions.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62J12 Generalized linear models (logistic models)
Full Text: DOI

References:

[1] Beaton, Sources of variance in 24-hour dietary recall data: Implications for nutrition study design and interpretation, American Journal of Clinical Nutrition 32 pp 2546– (1979)
[2] Benjamini, Controlling the false discovery rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society, Series B 57 pp 289– (1995) · Zbl 0809.62014
[3] Carroll, Transformation and Weighting in Regression (1988) · doi:10.1007/978-1-4899-2873-3
[4] Cochran, Errors of measurement in statistics, Technometrics 10 pp 637– (1968) · Zbl 0177.46503 · doi:10.2307/1267450
[5] Davidian, Variance functions and the minimum detectable concentration in assays, Biometrika 75 pp 549– (1988) · Zbl 0651.62100 · doi:10.1093/biomet/75.3.549
[6] Findlay, Validation of immunoassays for bioanalysis: A pharmaceutical industry perspective, Journal of Pharmaceutical and Biomedical Analysis 21 pp 1249– (2000) · doi:10.1016/S0731-7085(99)00244-7
[7] Finney, Radioligand assay, Biometrics 32 pp 721– (1976) · doi:10.2307/2529258
[8] Finney, Statistical Method in Biological Assay (1978)
[9] Freedman, The impact of dietary measurement error on planning a sample size required in a cohort study, American Journal of Epidemiology 132 pp 1185– (1990)
[10] Freudenheim, The problem of profound mismeasurement and the power of epidemiologic studies of diet and cancer, Nutrition and Cancer 11 pp 243– (1988) · doi:10.1080/01635588809513994
[11] Fuchs, Dietary fiber and the risk of colorectal cancer and adenoma in women, New England Journal of Medicine 340 pp 169– (1999) · doi:10.1056/NEJM199901213400301
[12] Heagerty, Marginally specified logistic-normal models for longitudinal binary data, Biometrics 55 pp 688– (1999) · Zbl 1059.62566 · doi:10.1111/j.0006-341X.1999.00688.x
[13] Heagerty, Misspecified maximum likelihood estimates and generalized linear mixed models, Biometrika 88 pp 973– (2001) · Zbl 0986.62060 · doi:10.1093/biomet/88.4.973
[14] Hunter, Cohort studies of fat intake and the risk of breast cancer-A pooled analysis, New England Journal of Medicine 334 pp 356– (1996) · doi:10.1056/NEJM199602083340603
[15] Kerr, Experimental design for gene expression microarrays, Biostatistics 2 pp 183– (2001a) · Zbl 1097.62562 · doi:10.1093/biostatistics/2.2.183
[16] Kerr, Statistical design and analysis of gene expression microarrays, Genetical Research 77 pp 123– (2001b)
[17] Kerr, Analysis of variance for gene expression microarray data, Journal of Computational Biology 7 pp 819– (2000) · doi:10.1089/10665270050514954
[18] Kipnis, Empirical evidence of correlated biases in dietary assessment instruments and its implications, American Journal of Epidemiology 153 pp 394– (2001) · doi:10.1093/aje/153.4.394
[19] Kipnis, Bias in dietary-report instruments and its implications for nutritional epidemiology, Public Health Nutrition 5 pp 915– (2003) · doi:10.1079/PHN2002383
[20] Kipnis, The structure of dietary measurement error: Results of the OPEN biomarker study, American Journal of Epidemiology, to appear (2003) · doi:10.1093/aje/kwg091
[21] Mallick, Semiparametric regression modeling with mixtures of Berkson and classical error, with application to fallout from the Nevada Test Site, Biometrics 58 pp 13– (2002) · Zbl 1209.62078 · doi:10.1111/j.0006-341X.2002.00013.x
[22] Michels, Prospective study of fruit and vegetable consumption and incidence of colon and rectal cancers, Journal of the National Cancer Institute 92 pp 1740– (2000) · doi:10.1093/jnci/92.21.1740
[23] Munson, Computerized analysis of quality control for radioimmunoassays, Proceedings of Computer Science and Statistics: 10th Annual Symposium on the Interface pp 288– (1978)
[24] Nguyen, DNA microarray experiments: Biological and technological issues, Biometrics 58 pp 701– (2002) · Zbl 1210.62197 · doi:10.1111/j.0006-341X.2002.00701.x
[25] O’Connell, Calibration and assay development using the four-parameter logistic model, Chemometrics and Intelligent Laboratory Systems 20 pp 97– (1993) · doi:10.1016/0169-7439(93)80008-6
[26] Pearson, On the mathematical theory of errors of judgment, Philosophical Transactions of the Royal Society of London A 198 pp 235– (1902) · JFM 33.0242.03 · doi:10.1098/rsta.1902.0005
[27] Ramakrishnan, An assessment of Motorola CodeLink microarray performance for gene expression profiling applications, Nucleic Acids Research 30 pp e30– (2002) · doi:10.1093/nar/30.7.e30
[28] Reish, An investigation of the population dynamics of Atlantic menhaden (Brevoortia tyrannus), Canadian Journal of Fisheries and Aquatic Sciences 42 pp 147– (1985) · doi:10.1139/f85-270
[29] Rodbard, Statistical estimation of the minimum detectable concentration (”sensitivity”) for radioligand assays, Analytical Biochemistry 90 pp 1– (1978) · doi:10.1016/0003-2697(78)90002-7
[30] Ruppert , D. Carroll , R. J. 1985 Data transformations in regression analysis with applications to stock recruitment relationships Resource Management M. Mangel Springer-Verlag · Zbl 0585.62115
[31] Ruppert, Monte-Carlo optimization by stochastic approximation, with application to harvesting of Atlantic menhaden, Biometrics 40 pp 353– (1984) · doi:10.2307/2531408
[32] Ruppert, A stochastic model for managing the Atlantic menhaden fishery and assessing managerial risks, Canadian Journal of Fisheries and Aquatic Sciences 42 pp 1371– (1985) · doi:10.1139/f85-172
[33] Schafer, Uncertainties in Radiation Dosimetry and Their Impact on Dose Response Analysis (1999)
[34] Schafer, Thyroid cancer following scalp irradiation: A reanalysis accounting for uncertainty in dosimetry, Biometrics 57 pp 689– (2001) · Zbl 1209.62327 · doi:10.1111/j.0006-341X.2001.00689.x
[35] Smith, Conceptual and statistical issues in the validation of analytic dilution assays for pharmaceutical applications, Journal of Biopharmaceutical Statistics 8 pp 509– (1998) · Zbl 0919.62126 · doi:10.1080/10543409808835257
[36] Wu, Experiments: Planning, Analysis, and Parameter Design Optimization (2000) · Zbl 0964.62065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.