×

Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces. (English) Zbl 1210.58025

Summary: We study extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of compact genus two Riemann surfaces. By a combination of analytical and numerical methods, we identify four non-degenerate critical points of this function and compute the signature of the Hessian at these points. The curve with the maximal number of automorphisms (the Burnside curve) turns out to be the point of the absolute maximum. Our results agree with the mass formula for virtual Euler characteristics of the moduli space. A similar analysis is performed for Bolza’s strata of symmetric Riemann surfaces of genus two.

MSC:

58J52 Determinants and determinant bundles, analytic torsion
14H15 Families, moduli of curves (analytic)
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)

Software:

fminsearch

References:

[1] Apostol T. (1976). Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in Mathematics, No. 41. Springer, Heidelberg · Zbl 0332.10017
[2] Ash A. (1980). On the existence of eutactic forms. Bull. Lond. Math. Soc. 12: 192–196 · doi:10.1112/blms/12.3.192
[3] Bochner S. and Martin W. (1948). Several Complex Variables. Princeton University Press, New Jersey · Zbl 0041.05205
[4] Bolza O. (1888). On binary sextics with linear transformations into themselves. Am. J. Math. 10: 47–60 · JFM 19.0488.01 · doi:10.2307/2369402
[5] Bryan, J., Fulman, J.: Orbifold Euler characteristics and the number of commuting m-tuples in the symmetric group, math.CO/9712248 · Zbl 0921.55003
[6] Buser P. and Silhol R. (2001). Geodesics, periods and equations of real hyperelliptic curves. Duke Math. J 108: 211–250 · Zbl 1019.30042 · doi:10.1215/S0012-7094-01-10822-3
[7] Cummins, C.: Private communication
[8] Ford L.R. (1929). Automorphic Functions. McGraw-Hill, New York · JFM 55.0810.04
[9] Getzler E. (2002). Euler characteristics of local systems on \({\mathcal{M}}_2\) Compos. Math. 132: 121–135 · Zbl 1055.14027 · doi:10.1023/A:1015826400148
[10] Gottschling E. (1959). Explizite Bestimmung der Randflächen des Fundamentalbereiches der Modulgruppe zweiten Grades. Math. Ann. 138: 103–124 · Zbl 0088.28903 · doi:10.1007/BF01342938
[11] Harer J. and Zagier D. (1986). The Euler characteristic of the moduli space of curves. Invent. Math. 85: 457–485 · Zbl 0616.14017 · doi:10.1007/BF01390325
[12] Hirzebruch F. and Höfer T. (1990). On the Euler number of an orbifold. Math. Ann. 286: 255–260 · Zbl 0679.14006 · doi:10.1007/BF01453575
[13] Igusa J. (1960). Arithmetic variety of moduli for genus two. Ann. Math. 72(2): 612–649 · Zbl 0122.39002 · doi:10.2307/1970233
[14] Jakobson, D., Levitin, M., Nadirashvili, N., Nigam, N., Polterovich, I.: How large can the first eigenvalue be on a surface of genus two? math.SP/0509398. Intern. Math. Res. Notices, to appear · Zbl 1114.58026
[15] Jorgenson J. and Kramer J. (2006). Non-completeness of the Arakelov-induced metric on moduli space of curves. Manusc. Math. 119: 453–463 · Zbl 1096.14017 · doi:10.1007/s00229-006-0625-2
[16] Knizhnik V. (1989). Multiloop amplitudes in the theory of quantum strings and complex geometry. Soviet Phys. Uspekhi 32: 945–971 · doi:10.1070/PU1989v032n11ABEH002775
[17] Kontsevich M. and Zorich A. (2003). Connected components of the moduli spaces of holomorphic differentials with prescribed singularities. Invent. Math. 153: 631–678 · Zbl 1087.32010 · doi:10.1007/s00222-003-0303-x
[18] Kokotov, A., Korotkin, D.: Isomonodromic tau-function of Hurwitz Frobenius manifolds and its applications. Int. Math. Res. Not. 2006, Art. ID 18746, pp 1–34 (2006) · Zbl 1098.53066
[19] Kokotov A. and Korotkin D. (2005). Normalized Ricci flow and determinant of Laplacian. Lett. Math. Phys. 71: 241–242 · Zbl 1084.58505 · doi:10.1007/s11005-005-1451-2
[20] Kokotov, A., Korotkin, D.: Tau-functions on spaces of Abelian differentials and higher genus generalizations of Ray-Singer formula, preprint of MPI Leipzig, 46/2004 · Zbl 1175.30041
[21] Lagarias J.C., Reeds J.A., Wright M.H. and Wright P.E. (1998). Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9(1): 112–147 · Zbl 1005.90056 · doi:10.1137/S1052623496303470
[22] Lewittes J. (1969). Differentials and Metrics on Riemann surfaces. Trans. Am. Math. Soc. 139: 311–318 · Zbl 0174.37302
[23] Osgood B., Phillips R. and Sarnak P. (1988). Extremals of determinants of Laplacians. J. Funct. Anal. 80: 148–211 · Zbl 0653.53022 · doi:10.1016/0022-1236(88)90070-5
[24] Pollicott M. and Rocha A. (1997). A remarkable formula for the determinant of the Laplacian. Invent. Math. 130: 399–414 · Zbl 0896.58067 · doi:10.1007/s002220050190
[25] Rauch E. and Lewittes J. (1970). The Riemann surface of Klein with 168 automorphisms, in Problems in analysis (papers dedicated to S.Bochner). Princeton University Press, New Jersey, 297–308 · Zbl 0219.30007
[26] Ray D.B. and Singer I.M. (1973). Analytic torsion for complex manifolds. Ann. Math. 98(2): 154–177 · Zbl 0267.32014 · doi:10.2307/1970909
[27] Quine, J.R., Sarnak, P. (eds.): Extremal Riemann surfaces, Contemporary Mathematics, 201. AMS (1997) · Zbl 0856.00021
[28] Sarnak, P.: Extremal geometries, in [27] · Zbl 0873.58069
[29] Schiller J. (1969). Moduli for special Riemann surfaces of genus two. Trans. Am. Math. Soc. 144: 95–113 · Zbl 0204.09601
[30] Schmutz Schaller P. (1998). Geometry of Riemann surfaces based on closed geodesics. Bull. AMS 35(3): 193–214 · Zbl 1012.30029 · doi:10.1090/S0273-0979-98-00750-2
[31] Schmutz Schaller P. (1999). Systoles and topological Morse functions for Riemann surfaces. J. Differ. Geom. 52: 407–452 · Zbl 1033.32010
[32] Siegel C.L. (1964). Symplectic Geometry. Academic Press, New York · Zbl 0138.31403
[33] Silhol, R.: Period matrices and the Schottky problem, in Topics on Riemann surfaces and Fuchsian groups 155-163, London Math. Soc. Lecture Note Ser., 287. Cambridge University Press, Cambridge (2001)
[34] Thurston, W.: Geometry and topology of 3-manifolds, Princeton lectures (1978) · Zbl 0399.73039
[35] Ji L. and Wentworth R. (1992). Spectral convergence on degenerating surfaces. Duke Math. J. 66(3): 469–501 · Zbl 0774.58041 · doi:10.1215/S0012-7094-92-06615-4
[36] Yoshikawa K. (1999). Discriminants of theta divisors and Quillen metrics. J. Differ. Geom. 52: 73–115 · Zbl 1033.58029
[37] Yoshikawa K. (2004). K3 surfaces with involution, equivariant analytic torsion and automorphic forms on the moduli space. Invent. Math. 156(1): 53–117 · Zbl 1058.58013 · doi:10.1007/s00222-003-0334-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.