×

Small exotic rational surfaces without 1- and 3-handles. (English) Zbl 1210.57030

Theorem: For \(7\leq n \leq 9\), there exists a smooth 4-manifold that is homeomorphic but not diffeomorphic to \(\mathbb CP^2\#n \overline{\mathbb CP^2}\) and has neither 1- nor 3-handles in a handle decomposition. Furthermore, there exists a smooth 4-manifold that is homeomorphic but not diffeomorphic to \(\mathbb CP^2\#6\overline{\mathbb CP^2}\) and has no 1-handles in a handle decomposition.
The method of the construction uses rational blowdowns (Fintushel-Stern). Also, the author proposes a strategy of applications of rational blowdowns for construction of exotic \(\mathbb CP^2\#n\overline{\mathbb CP^2}\), \(n\leq 9\).

MSC:

57R55 Differentiable structures in differential topology
57R65 Surgery and handlebodies
57N13 Topology of the Euclidean \(4\)-space, \(4\)-manifolds (MSC2010)

References:

[1] S. Akbulut, The Dolgachev Surface, arXiv:0805.1524. · Zbl 1251.57022
[2] Selman Akbulut and Kouichi Yasui, Corks, plugs and exotic structures, J. Gökova Geom. Topol. GGT 2 (2008), 40 – 82. · Zbl 1214.57027
[3] Anar Akhmedov and B. Doug Park, Exotic smooth structures on small 4-manifolds, Invent. Math. 173 (2008), no. 1, 209 – 223. · Zbl 1144.57026 · doi:10.1007/s00222-008-0118-x
[4] A. Akhmedov and B. D. Park, Exotic Smooth Structures on Small \( 4\)-Manifolds with Odd Signatures, arXiv:math/0701829 · Zbl 1206.57029
[5] Ronald Fintushel and Ronald J. Stern, Rational blowdowns of smooth 4-manifolds, J. Differential Geom. 46 (1997), no. 2, 181 – 235. · Zbl 0896.57022
[6] Ronald Fintushel and Ronald J. Stern, Double node neighborhoods and families of simply connected 4-manifolds with \?\(^{+}\)=1, J. Amer. Math. Soc. 19 (2006), no. 1, 171 – 180. · Zbl 1087.57019
[7] Ronald Fintushel and Ronald J. Stern, Six lectures on four 4-manifolds, Low dimensional topology, IAS/Park City Math. Ser., vol. 15, Amer. Math. Soc., Providence, RI, 2009, pp. 265 – 315. · Zbl 1195.57001
[8] Robert E. Gompf and András I. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. · Zbl 0933.57020
[9] Peter Ozsváth and Zoltán Szabó, On Park’s exotic smooth four-manifolds, Geometry and topology of manifolds, Fields Inst. Commun., vol. 47, Amer. Math. Soc., Providence, RI, 2005, pp. 253 – 260. · Zbl 1095.57027
[10] Jongil Park, Seiberg-Witten invariants of generalised rational blow-downs, Bull. Austral. Math. Soc. 56 (1997), no. 3, 363 – 384. · Zbl 0892.57020 · doi:10.1017/S0004972700031154
[11] Jongil Park, Simply connected symplectic 4-manifolds with \?\(^{+}\)\(_{2}\)=1 and \?²\(_{1}\)=2, Invent. Math. 159 (2005), no. 3, 657 – 667. · Zbl 1080.57030 · doi:10.1007/s00222-004-0404-1
[12] Jongil Park, András I. Stipsicz, and Zoltán Szabó, Exotic smooth structures on \Bbb C\Bbb P²#5\Bbb C\Bbb P², Math. Res. Lett. 12 (2005), no. 5-6, 701 – 712. · Zbl 1081.57025 · doi:10.4310/MRL.2005.v12.n5.a7
[13] Ronald J. Stern, Will we ever classify simply-connected smooth 4-manifolds?, Floer homology, gauge theory, and low-dimensional topology, Clay Math. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 2006, pp. 225 – 239. · Zbl 1106.57024
[14] András I. Stipsicz and Zoltán Szabó, An exotic smooth structure on \Bbb C\Bbb P²#6\Bbb C\Bbb P², Geom. Topol. 9 (2005), 813 – 832. · Zbl 1077.57025 · doi:10.2140/gt.2005.9.813
[15] Kouichi Yasui, Exotic rational elliptic surfaces without 1-handles, Algebr. Geom. Topol. 8 (2008), no. 2, 971 – 996. · Zbl 1161.57017 · doi:10.2140/agt.2008.8.971
[16] Kouichi Yasui, Elliptic surfaces without 1-handles, J. Topol. 1 (2008), no. 4, 857 – 878. · Zbl 1204.57032 · doi:10.1112/jtopol/jtn026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.