×

Magnetic monopoles on manifolds with boundary. (English) Zbl 1210.53033

Summary: Kapustin and Witten associated a Hecke modification of a holomorphic bundle over a Riemann surface to a singular monopole on a Riemannian surface times an interval satisfying prescribed boundary conditions. We prove the existence and uniqueness of singular monopoles satisfying prescribed boundary conditions for any given Hecke modification data confirming the underlying geometric invariant theory principle.

MSC:

53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
58J32 Boundary value problems on manifolds

References:

[1] Michael Atiyah and Nigel Hitchin, The geometry and dynamics of magnetic monopoles, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988. · Zbl 0671.53001
[2] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), no. 1, 1 – 26. · Zbl 0529.53018 · doi:10.1112/plms/s3-50.1.1
[3] S. K. Donaldson, Boundary value problems for Yang-Mills fields, J. Geom. Phys. 8 (1992), no. 1-4, 89 – 122. · Zbl 0747.53022 · doi:10.1016/0393-0440(92)90044-2
[4] S. K. Donaldson, Nahm’s equations and the classification of monopoles, Comm. Math. Phys. 96 (1984), no. 3, 387 – 407. · Zbl 0603.58042
[5] Edward Frenkel and David Ben-Zvi, Vertex algebras and algebraic curves, 2nd ed., Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004. · Zbl 1106.17035
[6] Hans Grauert, Holomorphe Funktionen mit Werten in komplexen Lieschen Gruppen, Math. Ann. 133 (1957), 450 – 472 (German). · Zbl 0080.29202 · doi:10.1007/BF01343758
[7] Stuart Jarvis, Construction of Euclidean monopoles, Proc. London Math. Soc. (3) 77 (1998), no. 1, 193 – 214. · Zbl 0893.53011 · doi:10.1112/S0024611598000446
[8] Stuart Jarvis and Paul Norbury, Compactification of hyperbolic monopoles, Nonlinearity 10 (1997), no. 5, 1073 – 1092. · Zbl 0906.53022 · doi:10.1088/0951-7715/10/5/005
[9] Anton Kapustin and Edward Witten, Electric-magnetic duality and the geometric Langlands program, Commun. Number Theory Phys. 1 (2007), no. 1, 1 – 236. · Zbl 1128.22013 · doi:10.4310/CNTP.2007.v1.n1.a1
[10] Kronheimer, Peter Monopoles and Taub-NUT metrics. MSc thesis, Oxford (1985).
[11] Claude LeBrun, Explicit self-dual metrics on \?\?\(_{2}\)#\cdots#\?\?\(_{2}\), J. Differential Geom. 34 (1991), no. 1, 223 – 253. · Zbl 0725.53067
[12] Marc Pauly, Monopole moduli spaces for compact 3-manifolds, Math. Ann. 311 (1998), no. 1, 125 – 146. · Zbl 0920.58011 · doi:10.1007/s002080050180
[13] Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1986. Oxford Science Publications. · Zbl 0618.22011
[14] Carlos T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), no. 4, 867 – 918. · Zbl 0669.58008
[15] Michael E. Taylor, Partial differential equations, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996. Basic theory. Michael E. Taylor, Partial differential equations. I, Applied Mathematical Sciences, vol. 115, Springer-Verlag, New York, 1996. Basic theory. · Zbl 0869.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.