×

Projective operator spaces, almost periodicity and completely complemented ideals in the Fourier algebra. (English) Zbl 1210.47098

The author considers projective operator spaces in the sense of [D.P.Blecher, “The standard dual of an operator space”, Pac.J.Math.153, No.1, 15–30 (1992; Zbl 0726.47030)]: an operator space space \(E\) is called projective if, for every operator space \(X\), each closed subspace \(Y\) of \(X\), each complete contraction \(\Gamma : E \to X/Y\), and each \(\varepsilon > 0\), there is a lifting \(\tilde{\Gamma} : E \to X\) of \(\Gamma\) with \(\| \tilde{\Gamma} \|_{cb} \leq 1 + \varepsilon\). The paper focuses on projective operator spaces that arise naturally in abstract harmonic analysis, in particular on subspaces of the Fourier algebra \(A(G)\) or of the Fourier-Stieltjes algebra \(B(G)\) of a locally compact group \(G\). Among other things, the author shows that \(A(G)\) is projective if and only if \(B(G)\) is projective if and only if \(G\) is compact. Applications to (complete) invariant complementation of ideals of \(A(G)\) are also given.

MSC:

47L25 Operator spaces (= matricially normed spaces)
43A30 Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc.
46J20 Ideals, maximal ideals, boundaries
46L07 Operator spaces and completely bounded maps

Citations:

Zbl 0726.47030
Full Text: DOI

References:

[1] D.E. Alspach, A characterization of the complemented translation invariant subspaces of \(L^1(\r^2)\) , J. London Math. Soc. 31 (1985), 115-124. · Zbl 0577.46005 · doi:10.1112/jlms/s2-31.1.115
[2] D.E. Alspach and A. Matheson, Projections onto translation invariant subspaces of \(L^1(\r)\) , Trans. Amer. Math. Soc. 77 (1984), 815-823. JSTOR: · Zbl 0516.46013 · doi:10.2307/1999238
[3] D.E. Alspach, A. Matheson and J. Rosenblatt, Projections onto translation invariant subspaces of \(L^1(G)\) , J. Functional Anal. 59 (1984), 254-292. · Zbl 0581.43003 · doi:10.1016/0022-1236(84)90074-0
[4] —, Separating sets by Fourier-Stieltjes transforms , J. Functional Anal. 84 (1989), 297-311. · Zbl 0683.43003 · doi:10.1016/0022-1236(89)90099-2
[5] G. Arsac, Sur l’espaces de Banach engendré par les coefficients d’une représentation unitaire , Publ. Dép. Math. (Lyon) 13 (1976), 1-101. · Zbl 0365.43005
[6] O.Yu. Aristov, Biprojective algebras and operator spaces , Functional Anal. 8. J. Math. Sci. · Zbl 1011.46045 · doi:10.1023/A:1016047626689
[7] A. Belanger and B. Forrest, Geometric properties of coefficient function spaces determined by unitary representations of a locally compact group , J. Math. Anal. 193 (1995), 390-405. · Zbl 0854.43010 · doi:10.1006/jmaa.1995.1242
[8] D.P. Blecher, The standard dual of an operator space , Pacific J. Math. 153 (1992), 15-30. · Zbl 0726.47030 · doi:10.2140/pjm.1992.153.15
[9] L.J. Bunce, The Dunford-Pettis property in the predual of a von Neumann algebra , Proc. Amer. Math. Soc. 116 (1992), 99-100. · Zbl 0810.46060 · doi:10.2307/2159300
[10] C.H. Chu, A note on scattered \(C^*\)-algebras and the Radon-Nikodym property , J. London Math. Soc. 24 (1981), 533-536. · Zbl 0438.46041 · doi:10.1112/jlms/s2-24.3.533
[11] C.H. Chu and B. Iochum, The Dunford-Pettis property in \(C^*\)-algebras , Studia Math. 97 (1990), 59-64. · Zbl 0734.46034
[12] J. Diestel and J.J. Uhl, Vector measures , Math. Surveys 15 , Amer. Math. Soc., Providence, RI, 1977. · Zbl 0369.46039
[13] P. Eymard, L’algèbre de Fourier d’un groupe localement compact , Bull. Soc. Math. France 92 (1964), 181-236. · Zbl 0169.46403
[14] B. Forrest, Amenability and weak amenability of the Fourier algebra, · Zbl 1080.22002 · doi:10.1007/s00209-005-0772-2
[15] —, Complemented ideals in the Fourier algebra and the Radon Nikodym property , Trans. Amer. Math. Soc. 333 (1992), 689-700. JSTOR: · Zbl 0783.43004 · doi:10.2307/2154054
[16] B. Forrest, E. Kaniuth, A.T. Lau and N. Spronk, Ideals with bounded approximate identities in Fourier algebras , J. Functional Anal. 203 (2003), 286-304. · Zbl 1039.46042 · doi:10.1016/S0022-1236(02)00121-0
[17] B. Forrest and V. Runde, Amenability and weak amenability of the Fourier algebra , Math. Z. 250 (2005), 731-744. · Zbl 1080.22002 · doi:10.1007/s00209-005-0772-2
[18] B.E. Forrest and P. Wood, Cohomology and the operator space structure of the Fourier algebra and its second dual , Indiana Univ. Math. J. 50 (2001), 1217-1240. · Zbl 1037.43005 · doi:10.1512/iumj.2001.50.1835
[19] A. Grothendieck, Une caractrisation vectorielle-metrique des espaces \(L_1\) , Canad. J. Math. 7 (1955), 552-561. · Zbl 0065.34503 · doi:10.4153/CJM-1955-060-6
[20] M. Hamana, On linear topological properties on some C*-algebras , Tohôku Math. J. 29 (1977), 157-163. · Zbl 0346.46045 · doi:10.2748/tmj/1178240703
[21] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis , Vol. I, Springer-Verlag, Berlin, 1973. · Zbl 0115.10603
[22] B. Johnson, Cohomology in Banach algebras , Mem. Amer. Math. Soc. 127 (1972). · Zbl 0256.18014
[23] —, Nonamenability of the Fourier algebra for compact groups , J. London Math. Soc. 50 (1994), 361-374. · Zbl 0829.43004 · doi:10.1112/jlms/50.2.361
[24] —, Weak amenability of group algebras , Bull. London Math. Soc. 50 (1994), 361-374. · Zbl 0829.43004
[25] A. Kepert, Banach algebra amenability and group algebras , Ph.D. thesis, Australian National University, 1992. · Zbl 0824.43001
[26] A.Ya. Khelemskii, Flat Banach modules and amenable algebras , Trans. Moscow Math. Soc., 1984; Amer. Math. Soc. Transl. (1985), 199-224. · Zbl 0569.46027
[27] —, The homology of Banach and toplogical algebras , Mathematics and its Applications (Soviet Series) 41 , Kluwer Academic Publishers, 1986.
[28] —, Banach and locally convex algebras , Oxford Science Publications, 1992.
[29] A.T. Lau, R.J. Loy and G.A. Willis, Amenability of Banach and \(C^*\)-algebras on locally compact groups , Studia Math. 119 (1996), 161-178. · Zbl 0858.46038
[30] A.T. Lau and A. Ülger, Some geometric properties on the Fourier and Fourier-Stieltjes algebras of locally compact groups, Arens regularity and related problems , Trans. Amer. Math. Soc. 377 (1993), 321-359. JSTOR: · Zbl 0778.43003 · doi:10.2307/2154325
[31] V. Losert, On tensor products of the Fourier algerba , Arch. Math. 43 (1984), 370-372. · Zbl 0587.43001 · doi:10.1007/BF01196662
[32] T. Miao, Compactness of a locally compact group \(G\) and some geometric properties of \(A_p(G)\) , Canad. J. Math. 48 (1996), 1273-1285. · Zbl 0890.43001 · doi:10.4153/CJM-1996-067-0
[33] D.J. Newman, The nonexistence of projections from \(L^1\) to \(H^1\) , Proc. Amer. Math. Soc. 12 (1961), 98-99. JSTOR: · Zbl 0095.30901 · doi:10.2307/2034132
[34] H.P. Rosenthal, Projections onto translation invariant subspaces of \(L^p(G)\) , Mem. Amer. Math. Soc. 63 (1966). · Zbl 0203.43903
[35] Z-J. Ruan, The operator amenability of A(G) , Amer. J. Math. 117 (1995), 1449-1476. JSTOR: · Zbl 0842.43004 · doi:10.2307/2375026
[36] W. Rudin, Projections on invariant subspaces , Proc. Amer. Math. Soc. 13 (1962), 429-432. JSTOR: · Zbl 0105.09504 · doi:10.2307/2034952
[37] N. Spronk, Operator weak amenability of the Fourier algebra , Proc. Amer. Math. Soc. 130 (2002), 3609-3617. JSTOR: · Zbl 1006.46040 · doi:10.1090/S0002-9939-02-06680-7
[38] H. Steiniger, Finite-dimensional extensions of Fourier algebras , · Zbl 1080.46036
[39] Peter J. Wood, The operator biprojectivity of the Fourier algerba , Canad. J. Math. 54 (2002), 1100-1120. · Zbl 1033.46045 · doi:10.4153/CJM-2002-041-1
[40] —, Complemented ideals in the Fourier algebra of a locally compact group , Proc. Amer. Math. Soc. 128 (2000), 445-451. JSTOR: · Zbl 0928.46036 · doi:10.1090/S0002-9939-99-04989-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.