×

Multiple testing via \(\mathrm{FDR}_L\) for large-scale imaging data. (English) Zbl 1209.62166

Summary: The multiple testing procedure plays an important role in detecting the presence of spatial signals for large-scale imaging data. Typically, the spatial signals are sparse but clustered. This paper provides empirical evidence that for a range of commonly used control levels, the conventional false discovery rate (FDR) procedure can lack the ability to detect statistical significance, even if the \(p\)-values under the true null hypotheses are independent and uniformly distributed; more generally, ignoring the neighboring information of spatially structured data will tend to diminish the detection effectiveness of the FDR procedure.
This paper first introduces a scalar quantity to characterize the extent to which the “lack of identification phenomenon” (LIP) of the FDR procedure occurs. Second, we propose a new multiple comparison procedure, called FDR\(_L\), to accommodate the spatial information of neighboring \(p\)-values, via a local aggregation of \(p\)-values. Theoretical properties of the FDR\(_L\) procedure are investigated under weak dependence of \(p\)-values. It is shown that the FDR\(_L\) procedure alleviates the LIP of the FDR procedure, thus substantially facilitating the selection of more stringent control levels. Simulation evaluations indicate that the FDR\(_L\) procedure improves the detection sensitivity of the FDR procedure with little loss in detection specificity. The computational simplicity and detection effectiveness of the FDR\(_L\) procedure are illustrated through a real brain fMRI dataset.

MSC:

62J15 Paired and multiple comparisons; multiple testing
62H35 Image analysis in multivariate analysis
92C55 Biomedical imaging and signal processing
62G10 Nonparametric hypothesis testing
65C60 Computational problems in statistics (MSC2010)

Software:

AFNI; FMRISTAT; FSL

References:

[1] Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289-300. JSTOR: · Zbl 0809.62014
[2] Benjamini, Y. and Heller, R. (2007). False discovery rates for spatial signals. J. Amer. Statist. Assoc. 102 1272-1281. · Zbl 1332.94019 · doi:10.1198/016214507000000941
[3] Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29 1165-1188. · Zbl 1041.62061 · doi:10.1214/aos/1013699998
[4] Casella, G. and Berger, R. L. (1990). Statistical Inference . Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, CA. · Zbl 0699.62001
[5] Chu, C. K., Glad, I., Godtliebsen, F. and Marron, J. S. (1998). Edge preserving smoothers for image processing (with discussion). J. Amer. Statist. Assoc. 93 526-556. JSTOR: · Zbl 0954.62115 · doi:10.2307/2670100
[6] Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29 162-173.
[7] Dudoit, S., Shaffer, J. P. and Boldrick, J. C. (2003). Multiple hypothesis testing in microarray experiments. Statist. Sci. 18 71-103. · Zbl 1048.62099 · doi:10.1214/ss/1056397487
[8] Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. J. Amer. Statist. Assoc. 99 96-104. · Zbl 1089.62502 · doi:10.1198/016214504000000089
[9] Fan, J., Hall, P. and Yao, Q. (2007). To how many simultaneous hypothesis tests can normal, Student’s t or bootstrap calibration be applied? J. Amer. Statist. Assoc. 102 1282-1288. · Zbl 1332.62063 · doi:10.1198/016214507000000969
[10] Genovese, C. and Wasserman, L. (2002). Operating characteristics and extensions of the false discovery rate procedure. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 499-517. JSTOR: · Zbl 1090.62072 · doi:10.1111/1467-9868.00347
[11] Genovese, C. R. and Wasserman, L. (2004). A stochastic process approach to false discovery control. Ann. Statist. 32 1035-1061. · Zbl 1092.62065 · doi:10.1214/009053604000000283
[12] Genovese, C. R., Roeder, K. and Wasserman, L. (2006). False discovery control with p -value weighting. Biometrika 93 509-524. · Zbl 1108.62070 · doi:10.1093/biomet/93.3.509
[13] Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N. and Chabriat, H. (2001). Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging 13 534-546.
[14] Leek, J. T. and Storey, J. D. (2008). A general framework for multiple testing dependence. Proc. Natl. Acad. Sci. USA 105 18718-18723. · Zbl 1359.62202
[15] Lehmann, E. L. and Romano, J. P. (2005). Generalizations of the familywise error rate. Ann. Statist. 33 1138-1154. · Zbl 1072.62060 · doi:10.1214/009053605000000084
[16] Lehmann, E. L., Romano, J. P. and Shaffer, J. P. (2005). On optimality of stepdown and stepup multiple test procedures. Ann. Statist. 33 1084-1108. · Zbl 1072.62060 · doi:10.1214/009053605000000084
[17] Nichols, T. and Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: A comparative review. Stat. Methods Med. Res. 12 419-446. · Zbl 1121.62645 · doi:10.1191/0962280203sm341ra
[18] Owen, A. B. (2005). Variance of the number of false discoveries. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 411-426. JSTOR: · Zbl 1069.62102 · doi:10.1111/j.1467-9868.2005.00509.x
[19] Roweis, S. and Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science 290 2323-2326.
[20] Sarkar, S. K. (2006). False discovery and false nondiscovery rates in single-step multiple testing procedures. Ann. Statist. 34 394-415. · Zbl 1091.62060 · doi:10.1214/009053605000000778
[21] Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I. Flitney, D. E., Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M. and Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23 208-219.
[22] Storey, J. D. (2002). A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 479-498. JSTOR: · Zbl 1090.62073 · doi:10.1111/1467-9868.00346
[23] Storey, J. D., Taylor, J. E. and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 187-205. JSTOR: · Zbl 1061.62110 · doi:10.1111/j.1467-9868.2004.00439.x
[24] van der Vaart, A. W. (1998). Asymptotic Statistics . Cambridge Univ. Press, Cambridge. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
[25] Woolrich, M. W., Ripley, B. D., Brady, M. and Smith, S. M. (2001). Temporal autocorrelation in univariate linear modelling of FMRI data. NeuroImage 14 1370-1386.
[26] Worsley, K. J., Liao, C. H., Aston, J., Petre, V., Duncan, G., Morales, F. and Evans, A. C. (2002). A general statistical analysis for fMRI data. NeuroImage 15 1-15.
[27] Wu, W. B. (2008). On false discovery control under dependence. Ann. Statist. 36 364-380. · Zbl 1139.62040 · doi:10.1214/009053607000000730
[28] Zhang, C. M. and Yu, T. (2008). Semiparametric detection of significant activation for brain fMRI. Ann. Statist. 36 1693-1725. · Zbl 1142.62026 · doi:10.1214/07-AOS519
[29] Zhang, C. M., Fan, J. and Yu, T. (2010). Supplement to “Multiple testing via FDR L for large scale imaging data.” DOI: .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.