×

Fundamental solutions and Liouville type theorems for nonlinear integral operators. (English) Zbl 1209.45009

The authors study basic properties for a class of nonlinear integral operators related to their fundamental solutions to establish Liouville type theorems: non-existence theorems for positive entire solutions for \(\mathcal Iu \leqslant 0\) and for \(\mathcal Iu + u^p \leqslant 0, p>1\).
They prove the existence of fundamental solutions and use them, via a comparison principle, to prove the theorems for entire solutions. The non-local nature of the operators poses various difficulties in the use of the comparison techniques, since the usual values of the functions at the boundary of the domain are replaced here by the values in the complement of the domain. In particular, they are not able to prove the Hadamard Three Spheres Theorem, but they still obtain some of its consequences that are sufficient for the arguments.

MSC:

45P05 Integral operators
45G10 Other nonlinear integral equations
47H30 Particular nonlinear operators (superposition, Hammerstein, Nemytskiĭ, Uryson, etc.)

References:

[1] S. Armstrong, B. Sirakov, A Liouville result for fully nonlinear equations with power-growth nonlinearities, preprint.; S. Armstrong, B. Sirakov, A Liouville result for fully nonlinear equations with power-growth nonlinearities, preprint. · Zbl 1250.35050
[2] S. Armstrong, B. Sirakov, C. Smart, Fundamental solutions of fully nonlinear elliptic equations, preprint.; S. Armstrong, B. Sirakov, C. Smart, Fundamental solutions of fully nonlinear elliptic equations, preprint. · Zbl 1233.35089
[3] Baeumer, B.; Kovacs, M.; Meerschaert, M. M., Fractional reaction-diffusion equation for species growth and dispersal, preprint available at · Zbl 1142.65422
[4] Barles, G.; Imbert, C., Second-order elliptic integro-differential equations: Viscosity solutions theory revisited, Ann. Inst. H. Poincare Anal. Non Lineaire, 25, 3, 567-585 (2008) · Zbl 1155.45004
[5] X. Cabré, J.M. Roquejoffre, Propagation de fronts dans les equations de Fisher-KPP avec diffusion fractionnaire, preprint.; X. Cabré, J.M. Roquejoffre, Propagation de fronts dans les equations de Fisher-KPP avec diffusion fractionnaire, preprint. · Zbl 1182.35072
[6] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32, 8, 1245-1260 (2007) · Zbl 1143.26002
[7] Caffarelli, L.; Silvestre, L., Regularity theory for fully nonlinear integro-differential equations, Comm. Pure Appl. Math., 62, 5, 597-638 (2009) · Zbl 1170.45006
[8] Caffarelli, L.; Gidas, B.; Spruck, J., Asymptotic symmetry and local behavior of semi-linear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42, 3, 271-297 (1989) · Zbl 0702.35085
[9] Capuzzo-Dolcetta, I.; Cutri, A., Hadamard and Liouville type results for fully nonlinear partial differential inequalities, Commun. Contemp. Math., 3, 435-448 (2003) · Zbl 1040.35024
[10] Chen, W.; Li, C., Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 3, 3, 615-622 (1991) · Zbl 0768.35025
[11] Chen, W.; Li, C.; Ou, B., Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59, 330-343 (2006) · Zbl 1093.45001
[12] Cutri, A.; Leoni, F., On the Liouville property for fully nonlinear equations, Ann. Inst. H. Poincaré Anal. Non Lineaire, 17, 2, 219-245 (2000) · Zbl 0956.35035
[13] Felmer, P.; Quaas, A., On critical exponents for the Pucci’s extremal operators, Ann. Inst. H. Poincaré Anal. Non Lineaire, 20, 5, 843-865 (2003) · Zbl 1274.35115
[14] Felmer, P.; Quaas, A., Fundamental solutions and two properties of elliptic maximal and minimal operators, Trans. Amer. Math. Soc., 361, 5721-5736 (2009) · Zbl 1181.35090
[15] Gidas, B., Symmetry and isolated singularities of positive solutions of nonlinear elliptic equations, (Nonlinear Partial Differential Equations in Engineering and Applied Science, Proc. Conf.. Nonlinear Partial Differential Equations in Engineering and Applied Science, Proc. Conf., Univ. Rhode Island, Kingston, RI, 1979. Nonlinear Partial Differential Equations in Engineering and Applied Science, Proc. Conf.. Nonlinear Partial Differential Equations in Engineering and Applied Science, Proc. Conf., Univ. Rhode Island, Kingston, RI, 1979, Lect. Notes Pure Appl. Math., vol. 54 (1980), Dekker: Dekker New York), 255-273 · Zbl 0444.35038
[16] Gidas, B.; Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34, 525-598 (1981) · Zbl 0465.35003
[17] Labutin, D., Removable singularities for fully nonlinear elliptic equations, Arch. Ration. Mech. Anal., 155, 201-214 (2000) · Zbl 0965.35043
[18] Labutin, D., Isolated singularities for fully nonlinear elliptic equations, J. Differential Equations, 177, 49-76 (2001) · Zbl 0998.35017
[19] Laskin, N., Fractional quantum mechanics and Levy path integrals, Phys. Lett. A, 268, 298-305 (2000) · Zbl 0948.81595
[20] Li, Y. Y., Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc. (JEMS), 6, 153-180 (2004) · Zbl 1075.45006
[21] Soner, Halil Mete, Optimal control with state-space constraint, II, SIAM J. Control Optim., 24, 6, 1110-1122 (1986) · Zbl 0619.49013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.