×

Quantum space-times beyond the continuum of Minkowski and Einstein. (English) Zbl 1208.83005

Petkov, Vesselin (ed.), Minkowski spacetime: A hundred years later. Dedicated to the 100th anniversary of the publication of Hermann Minkowski’s paper “Raum und Zeit” in 1909. Dordrecht: Springer (ISBN 978-90-481-3474-8/hbk; 978-90-481-3475-5/ebook). Fundamental Theories of Physics 165, 163-196 (2010).
Summary: In general relativity space-time ends at singularities. The big bang is considered as the Beginning and the big crunch, the End. However these conclusions are arrived at by using general relativity in regimes which lie well beyond its physical domain of validity. Examples where detailed analysis is possible show that these singularities are naturally resolved by quantum geometry effects. Quantum space-times can be vastly larger than what Einstein had us believe. These non-trivial space-time extensions enable us to answer of some long standing questions and resolve of some puzzles in fundamental physics. Thus, a century after Minkowski’s revolutionary ideas on the nature of space and time, yet another paradigm shift appears to await us in the wings.
For the entire collection see [Zbl 1220.83003].

MSC:

83-03 History of relativity and gravitational theory
81-03 History of quantum theory
01A60 History of mathematics in the 20th century

Citations:

Zbl 1220.83003

References:

[1] Hajicek, P., Origin of black hole radiation, Phys. Rev., D36, 1065 (1987)
[2] Ashtekar, A.; Lewandowski, J., Background independent quantum gravity: A status report Class, Quant. Grav., 21, R53-R152 (2004) · Zbl 1077.83017 · doi:10.1088/0264-9381/21/15/R01
[3] Rovelli, C., Quantum gravity (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1091.83001 · doi:10.1017/CBO9780511755804
[4] Thiemann, T., Introduction to modern canonical quantum general relativity (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1129.83004 · doi:10.1017/CBO9780511755682
[5] Ashtekar, A.; Lewandowski, J.; Marolf, D.; Mourão, J.; Thiemann, T., Quantization of diffeomorphism invariant theories of connections with local degrees of freedom, Jour. Math. Phys., 36, 6456-6493 (1995) · Zbl 0856.58006 · doi:10.1063/1.531252
[6] Rovelli, R.; Smolin, L., Discreteness of area and volume in quantum gravity, Nucl. Phys., B442, 593-622 (1995) · Zbl 0925.83013 · doi:10.1016/0550-3213(95)00150-Q
[7] Ashtekar, A.; Lewandowski, J., Quantum theory of geometry I: area operators, Class. Quantum Grav., 14, A55-A81 (1997) · Zbl 0866.58077 · doi:10.1088/0264-9381/14/1A/006
[8] Ashtekar, A.; Lewandowski, J., Quantum theory of geometry II: volume operators, Adv. Theo. & Math. Phys., 1, 388-429 (1997) · Zbl 0903.58067
[9] Perez, A., Spin foam models for quantum, Class. Quant. Grav., 20, R43-R104 (2003) · Zbl 1030.83002 · doi:10.1088/0264-9381/20/6/202
[10] Bojowald, M., Absence of singularity in loop quantum cosmology, Phys. Rev. Lett., 86, 5227-5230 (2001) · doi:10.1103/PhysRevLett.86.5227
[11] Bojowald, M., Loop quantum cosmology. Liv. Rev. Rel., 8, 11 (2005) · Zbl 1255.83133
[12] Ashtekar, A., An introduction to loop quantum gravity through cosmology, Nuovo Cimento, 112B, 1-20 (2007)
[13] Ashtekar, A.; Bojowald, M., Quantum geometry and the Schwarzschild singularity, Class. Quant. Grav., 23, 391-411 (2006) · Zbl 1090.83021 · doi:10.1088/0264-9381/23/2/008
[14] Boehmer, CG; Vandersloot, K., Loop quantum dynamics of the schwarzschild interior, Phys. Rev., D76, 104030 (2007)
[15] Ashtekar, A., Taveras, V., Varadarajan, M.: Information is not lost in 2-dimensional black hole evaporation. arXiv:0801.1811 · Zbl 1228.83055
[16] Hartle, JB; Hawking, SW, Wave function of the universe, Phys. Rev. D, 28, 2960 (1983) · Zbl 1370.83118 · doi:10.1103/PhysRevD.28.2960
[17] Gasperini, M.; Veneziano, G., The pre-big bang scenario in string cosmology, Phys. Rept., 373, 1 (2003) · doi:10.1016/S0370-1573(02)00389-7
[18] Khoury, J.; Ovrut, BA; Steinhardt, PJ; Turok, N., The ekpyrotic universe: colliding branes and the origin of the hot big bang, Phys. Rev., D64, 123522 (2001)
[19] Khoury, J.; Ovrut, B.; Seiberg, N.; Steinhardt, PJ; Turok, N., From big crunch to big bang, Phys. Rev., D65, 086007 (2002)
[20] Ashtekar, A.; Stachel, J., Conceptual problems of quantum gravity (1988), Boston: Birkhäuser, Boston · Zbl 0837.53060
[21] Komar, A.; Isham, CJ; Penrose, R.; Sciama, DW, Quantization program for general relativity. In: Carmeli, M., Fickler, S.I., Witten, L. (eds.) Relativity. Plenum, New York (1970); Kuchař, K.: Canonical methods of quantization, Quantum gravity 2, a second Oxford symposium (1981), Oxford: Clarendon Press, Oxford
[22] DeWitt, BS, Quantum theory of gravity I, The canonical theory. Phys. Rev., 160, 1113-1148 (1967) · Zbl 0158.46504
[23] Misner, C.W.: Mixmaster universe. Phys. Rev. Lett. 22, 1071-1074 (1969); Minisuperspace. In: Magic without Magic: John Archibald Wheeler; a collection of essays in honor of his sixtieth birthday. W. H. Freeman, San Francisco (1972) · Zbl 0177.28701
[24] Ashtekar, A.; Pawlowski, T.; Singh, P., Quantum nature of the big bang: an analytical and numerical investigation I, Phys. Rev., D73, 124038 (2006)
[25] Ashtekar, A., Pawlowski, T., Singh, P.: Loop quantum cosmology in the pre-inflationary epoch (in preparation)
[26] Rovelli, C., Quantum mechanics without time: a model, Phys. Rev., D42, 2638 (1990)
[27] Ashtekar, A.; Pawlowski, T.; Singh, P., Quantum nature of the big bang: improved dynamics, Phys. Rev., D74, 084003 (2006) · Zbl 1197.83047
[28] Kiefer, C., Wavepsckets in in minisuperspace, Phys. Rev., D38, 1761-1772 (1988)
[29] Marolf, D.; Ashtekar, A.; Bombelli, L.; Corichi, A., Semiclassical states for constrained systems, Class. Quant. Grav., 12, 1199-1220 (1994)
[30] Kamenshchik, A.; Kiefer, C.; Sandhofer, B., Quantum cosmology with big break singularity, Phys. Rev., D76, 064032 (2007)
[31] Ashtekar, A.; Pawlowski, T.; Singh, P.; Vandersloot, K.; Szulc, L.; Kaminski, W.; Lewandowski, J., Loop quantum cosmology of k = 1 FRW models, Phys. Rev. D75, 24, 0240035-2635 (2006)
[32] Lewandowski, J.; Okolow, A.; Sahlmann, H.; Thiemann, T.; Fleishchack, C., Uniqueness of diffeomorphism invariant states on holonomy flux algebras, Comm. Math. Phys., 267, 703-733 (2006) · Zbl 1188.83040
[33] Ashtekar, A.; Bojowald, M.; Lewandowski, J., Mathematical structure of loop quantum cosmology, Adv. Theo. Math. Phys., 7, 233-268 (2003)
[34] Ashtekar, A.; Pawlowski, T.; Singh, P., Quantum nature of the big bang, Phys. Rev. Lett., 96, 141301 (2006) · Zbl 1153.83417
[35] Willis, J.: On the low energy ramifications and a mathematical extension of loop quantum gravity. Ph.D. Dissertation, The Pennsylvaina State University (2004); Ashtekar, A., Bojowald, M., Willis, J.: Corrections to Friedmann equations induced by quantum geometry, IGPG preprint (2004); Taveras, V.: LQC corrections to the Friedmann equations for a universe with a free scalar field, IGC preprint (2007)
[36] Bojowald, M., Dynamical coherent states and physical solutions of quantum cosmological bounces, Phys. Rev. D, 75, 123512 (2007)
[37] Ashtekar, A., Corichi, A., Singh, P.: Robustness of predictions of loop quantum cosmology. PRD (in press), arXiv:0710.3565
[38] Green, D., Unruh, W.: Difficulties with recollapsing models in closed isotropic loop quantum cosmology. Phys. Rev. D70, 103502 (2004) arXiv:gr-qc/04-0074
[39] Ashtekar, A., Schilling, T.A.: Geometrical formulation of quantum mechanics. In: Harvey, A. (ed.) On Einstein’s path: essays in honor of Engelbert Schücking. pp. 23-65. Springer, New York (1999) arXiv:gr-qc/9706069 · Zbl 0976.53088
[40] Penrose, R., Zero rest mass fields including gravitation, Proc. R. Soc. (London), 284, 159-203 (1965) · Zbl 0129.41202
[41] Hawking, SW; DeWitt, BS; DeWitt, CM, The event horizon, Black holes (1972), Amsterdam: North-Holland, Amsterdam
[42] Hawking, SW, Gravitational radiation from colliding black holes, Phys. Rev. Lett., 26, 1344-1346 (1971) · doi:10.1103/PhysRevLett.26.1344
[43] Hawking, SW, particle creation by black holes, Commun. Math. Phys., 43, 199-220 (1975) · Zbl 1378.83040 · doi:10.1007/BF02345020
[44] Ashtekar, A.; Beetle, C.; Dreyer, O.; Fairhurst, S.; Krishnan, B.; Lewandowski, J.; Wisniewski, J., Generic isolated horizons and their applications, Phys. Rev. Lett., 85, 3564-3567 (2000) · Zbl 1369.83036 · doi:10.1103/PhysRevLett.85.3564
[45] Ashtekar, A.; Krishnan, B., Dynamical horizons: energy, angular momentum, fluxes and balance laws, Phys. Rev. Lett., 89, 261101-261104 (2002) · Zbl 1267.83023 · doi:10.1103/PhysRevLett.89.261101
[46] Ashtekar, A.; Krishnan, B., Dynamical horizons and their properties, Phys. Rev., D68, 104030-104055 (2003)
[47] Ashtekar, A.; Krishnan, B., Isolated and dynamical horizons and their applications, Living Rev. Rel., 10, 1-78 (2004) · Zbl 1071.83036
[48] Ashtekar, A.; Galloway, G., Some uniqueness results for dynamical horizons, Adv. Theor. Math. Phys., 9, 1-30 (2005) · Zbl 1100.83016
[49] Ashtekar, A.; Baez, J.; Corichi, A.; Krasnov, K.; Ashtekar, A.; Baez, J.; Krasnov, K.; Ashtekar, A.; Engle, J.; Den Broeck, C., Quantum geometry and black hole entropy, Phys. Rev. Lett., 80, 904-907 (1998) · Zbl 0949.83024
[50] Ashtekar, A.; Bojowald, M., Black hole evaporation: a paradigm, Class. Quant. Grav., 22, 3349-3362 (2005) · Zbl 1160.83332 · doi:10.1088/0264-9381/22/16/014
[51] Callen, CG; Giddings, SB; Harvey, JA; Strominger, A., Evanescent black holes, Phys. Rev., D45, R1005-R1010 (1992)
[52] Giddings, S.B.: Quantum mechanics of black holes. arXiv:hep-th/9412138; Strominger, A.: Les Houches lectures on black holes. arXiv:hep-th/9501071 · Zbl 0990.81671
[53] Geroch, R.; Horowitz, G., Asymptotically simple does not imply asymptotically Minkowskian, Phys. Rev. Lett., 40, 203-207 (1978)
[54] Giddings, SB; Nelson, WM, Quantum emission from two-dimensional black holes, Phys. Rev., D46, 2486-2496 (1992)
[55] Ashtekar, A.; Pierri, M., Probing quantum gravity through exactly soluble midi-superspaces I, J. Math. Phys., 37, 6250-6270 (1996) · Zbl 0862.58060 · doi:10.1063/1.531774
[56] Ashtekar, A., Large quantum gravity effects: Unexpected limitations of the classical theory, Phys. Rev. Lett., 77, 4864-4867 (1996) · Zbl 0949.83505 · doi:10.1103/PhysRevLett.77.4864
[57] Low, D. A.; Pirqan, T.; Strominger, A., Semiclassical approach to black hole evaporation, Phys. Rev., D48, 2446-2453 (1993)
[58] Laddha, A.: Polymer quantization of the CGHS model I. 24, 4969-4988 (2007); Polymer quantization of the CGHS model II. Class. Quantum Grav. 24, 4989-5009 (2007) · Zbl 1127.83008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.