×

On the Poincaré-Friedrichs inequality for piecewise \(H^{1}\) functions in anisotropic discontinuous Galerkin finite element methods. (English) Zbl 1208.26023

Summary: The purpose of this paper is to propose a proof for the Poincaré-Friedrichs inequality for piecewise \( H^1\) functions on anisotropic meshes. By verifying suitable assumptions involved in the newly proposed proof, we show that the Poincaré-Friedrichs inequality for piecewise \( H^1\) functions holds independently of the aspect ratio which characterizes the shape-regular condition in finite element analysis. In addition, under the maximum angle condition, we establish the Poincaré-Friedrichs inequality for the Crouzeix-Raviart nonconforming linear finite element. Counterexamples show that the maximum angle condition is only sufficient.

MSC:

26D10 Inequalities involving derivatives and differential and integral operators
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Gabriel Acosta, Lagrange and average interpolation over 3D anisotropic elements, J. Comput. Appl. Math. 135 (2001), no. 1, 91 – 109. · Zbl 0991.41004 · doi:10.1016/S0377-0427(00)00564-1
[2] Gabriel Acosta and Gabriel Monzón, Interpolation error estimates in \?^{1,\?} for degenerate \?\(_{1}\) isoparametric elements, Numer. Math. 104 (2006), no. 2, 129 – 150. · Zbl 1120.65116 · doi:10.1007/s00211-006-0018-1
[3] Gabriel Acosta and Ricardo G. Durán, The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations, SIAM J. Numer. Anal. 37 (1999), no. 1, 18 – 36. · Zbl 0948.65115 · doi:10.1137/S0036142997331293
[4] Gabriel Acosta and Ricardo G. Durán, Error estimates for \?\(_{1}\) isoparametric elements satisfying a weak angle condition, SIAM J. Numer. Anal. 38 (2000), no. 4, 1073 – 1088. · Zbl 0981.65124 · doi:10.1137/S0036142999359104
[5] Thomas Apel, Anisotropic finite elements: local estimates and applications, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1999. · Zbl 0917.65090
[6] Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742 – 760. · Zbl 0482.65060 · doi:10.1137/0719052
[7] Douglas N. Arnold and Richard S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal. 26 (1989), no. 6, 1276 – 1290. · Zbl 0696.73040 · doi:10.1137/0726074
[8] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749 – 1779. · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[9] I. Babuška and A. K. Aziz, On the angle condition in the finite element method, SIAM J. Numer. Anal. 13 (1976), no. 2, 214 – 226. · Zbl 0324.65046 · doi:10.1137/0713021
[10] Catherine Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, vol. 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. · Zbl 0436.35063
[11] M. Bebendorf, A note on the Poincaré inequality for convex domains, Z. Anal. Anwendungen 22 (2003), no. 4, 751 – 756. · Zbl 1057.26011 · doi:10.4171/ZAA/1170
[12] Mario Bebendorf and Wolfgang Hackbusch, Existence of \Bbb H-matrix approximants to the inverse FE-matrix of elliptic operators with \Bbb L^{\infty }-coefficients, Numer. Math. 95 (2003), no. 1, 1 – 28. · Zbl 1033.65100 · doi:10.1007/s00211-002-0445-6
[13] Faker Ben Belgacem, The mortar finite element method with Lagrange multipliers, Numer. Math. 84 (1999), no. 2, 173 – 197. · Zbl 0944.65114 · doi:10.1007/s002110050468
[14] Jan Brandts, Sergey Korotov, and Michal Křížek, On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions, Comput. Math. Appl. 55 (2008), no. 10, 2227 – 2233. · Zbl 1142.65443 · doi:10.1016/j.camwa.2007.11.010
[15] Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise \?\textonesuperior functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306 – 324. · Zbl 1045.65100 · doi:10.1137/S0036142902401311
[16] Susanne C. Brenner, Korn’s inequalities for piecewise \?\textonesuperior vector fields, Math. Comp. 73 (2004), no. 247, 1067 – 1087. · Zbl 1055.65118
[17] F. Brezzi, B. Cockburn, L. D. Marini, and E. Süli, Stabilization mechanisms in discontinuous Galerkin finite element methods, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 25-28, 3293 – 3310. · Zbl 1125.65102 · doi:10.1016/j.cma.2005.06.015
[18] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[19] Bernardo Cockburn and Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2440 – 2463. · Zbl 0927.65118 · doi:10.1137/S0036142997316712
[20] Bernardo Cockburn, George E. Karniadakis, and Chi-Wang Shu , Discontinuous Galerkin methods, Lecture Notes in Computational Science and Engineering, vol. 11, Springer-Verlag, Berlin, 2000. Theory, computation and applications; Papers from the 1st International Symposium held in Newport, RI, May 24 – 26, 1999. · Zbl 0989.76045
[21] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33 – 75. · Zbl 0302.65087
[22] Ricardo G. Durán and Ariel L. Lombardi, Error estimates on anisotropic \?\(_{1}\) elements for functions in weighted Sobolev spaces, Math. Comp. 74 (2005), no. 252, 1679 – 1706. · Zbl 1078.65094
[23] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. · Zbl 0585.65077
[24] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. · Zbl 0695.35060
[25] Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis, Academic Press, New York-London, 1968. · Zbl 0164.13002
[26] Yingjie Liu, Chi-Wang Shu, Eitan Tadmor, and Mengping Zhang, Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007), no. 6, 2442 – 2467. · Zbl 1157.65450 · doi:10.1137/060666974
[27] Michal Křížek, On the maximum angle condition for linear tetrahedral elements, SIAM J. Numer. Anal. 29 (1992), no. 2, 513 – 520. · Zbl 0755.41003 · doi:10.1137/0729031
[28] L. E. Payne, Isoperimetric inequalities and their applications, SIAM Rev. 9 (1967), 453 – 488. · Zbl 0154.12602 · doi:10.1137/1009070
[29] P. G. Ciarlet and J.-L. Lions , Handbook of numerical analysis. Vol. II, Handbook of Numerical Analysis, II, North-Holland, Amsterdam, 1991. Finite element methods. Part 1. · Zbl 0712.65091
[30] Rüdiger Verfürth, A note on polynomial approximation in Sobolev spaces, M2AN Math. Model. Numer. Anal. 33 (1999), no. 4, 715 – 719 (English, with English and French summaries). · Zbl 0936.41006 · doi:10.1051/m2an:1999159
[31] Barbara I. Wohlmuth, Discretization methods and iterative solvers based on domain decomposition, Lecture Notes in Computational Science and Engineering, vol. 17, Springer-Verlag, Berlin, 2001. · Zbl 0966.65097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.