×

Hilbert irreducibility above algebraic groups. (English) Zbl 1208.11080

The classical Hilbert Irreducibility Theorem can be viewed as saying the following: if \(\pi: Y \to {\mathbb A}^n_k\) is a dominant rational map of finite degree, with \(Y\) irreducible, then there is a rational point \(x \in {\mathbb A}^n_k\) such that the fibre \(\pi^{-1}(x)\) is irreducible. Replacing \({\mathbb A}^n\) with an arbitrary irreducible variety \(X\) over the field \(k\), we obtain a more general notion of Hilbert Irreducibility Theorem. This article concerns the case where \(X\) is an algebraic group, and we would like to restrict \(x\) to lie in a specified Zariski-dense subgroup of \(X(k)\).
To state the principal results of this article, we need to define the condition (PB) on on the cover \(Y \to X\), as follows.
Definition. The cover \(Y \to X\) satisfies condition (PB) (pullback) if, for any integer \(m>0\), the pullback \([m]^* Y := X \times_{[m],\pi} Y\) is irreducible.
The two main theorems cover different types of algebraic groups \(X\).
Theorem 1. For \(i = 1, \ldots, h\), let \(\pi_i : Y_i \to X := {\mathbb G}_{\roman m}^r \times {\mathbb G}_{\roman a}\) be a cover satisfying (PB). Then, if \(\Omega\) is a cyclic Zariski-dense subgroup of \(X(k)\), there exists a coset \(C\) of finite index in \(\Omega\) such that for all \(x \in C\) and for all \(i = 1, \ldots, h\) the fibre \(\pi_i^{-1}(x)\) is irreducible over \(k\).
In the second case, \(X\) is a power of an elliptic curve \(E\) without complex multiplication.
Theorem 2. For \(i = 1, \ldots, h\), let \(\pi_i : Y_i \to E^n\) be a cover satisfying (PB). Then, if \(\Omega\) is a Zariski-dense cyclic subgroup of \(E^n(k)\), there exists a coset \(C\) of finite index in \(\Omega\) such that for all \(x \in C\) and for all \(i = 1, \ldots, h\) the fibre \(\pi_i^{-1}(x)\) is irreducible over \(k\).
Another theorem, an application of the same method, is the following “toric analogue of the Bertini theorem”.
Theorem 3. Let \(\pi: Y \to {\mathbb G}_{\roman m}^n\) be a cover defined over \(\kappa\), satisfying (PB). Then there is a finite union \({\mathcal E}\) of proper connected algebraic subgroups of \({\mathbb G}_{\roman m}^n\) such that if a connected algebraic subgroup \(G\) is not contained in \({\mathcal E}\), then \(\pi^{-1}(\theta G)\) is irreducible (over \(\kappa\)) for every torsion point \(\theta\).
This paper has an extensive introduction describing the motivation and background to these results, their connection to previous results in this area, and several further applications.

MSC:

11G35 Varieties over global fields
12E25 Hilbertian fields; Hilbert’s irreducibility theorem
11G10 Abelian varieties of dimension \(> 1\)

References:

[1] D. Bertrand, Kummer theory on the product of an elliptic curve by the multiplicative group , Glasgow Math. J. 22 (1981), 83–88. · Zbl 0453.14019 · doi:10.1017/S001708950000450X
[2] E. Bombieri and W. Gubler, Heights in Diophantine Geometry , Cambridge Univ. Press, Cambridge, 2006. · Zbl 1115.11034
[3] J.-L. Colliot-ThéLèNe and J.-J. Sansuc, Principal homogeneous spaces under Flasque tori: applications , J. Algebra 106 (1987), 148–205. · Zbl 0597.14014 · doi:10.1016/0021-8693(87)90026-3
[4] P. Corvaja, Rational fixed points for linear group actions , Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 561–597. · Zbl 1207.11067 · doi:10.2422/2036-2145.2007.4.04
[5] P. Corvaja and U. Zannier, Some new applications of the subspace theorem , Compositio Math. 131 (2002), 319–340. · Zbl 1010.11038 · doi:10.1023/A:1015594913393
[6] -, On the integral points on certain surfaces , Int. Math. Res. Not. 2006 , 98623. · Zbl 1145.14023 · doi:10.1155/IMRN/2006/98623
[7] -, Some cases of Vojta’s conjecture on integral points over function fields , J. Algebraic Geom. 17 (2008), 295–333. · Zbl 1221.11146 · doi:10.1090/S1056-3911-07-00489-4
[8] P. DèBes, On the irreducibility of the polynomials \(P(t^ m,Y)\) , J. Number Theory 42 (1992), 141–157. · Zbl 0770.12005 · doi:10.1016/0022-314X(92)90018-K
[9] R. Dvornicich and U. Zannier, Cyclotomic diophantine problems (Hilbert irreducibility and invariant sets for polynomial maps) , Duke Math. J. 139 (2007), 527–554. · Zbl 1127.11040 · doi:10.1215/S0012-7094-07-13934-6
[10] A. Ferretti and U. Zannier, Equations in the Hadamard ring of rational functions , Ann. Scu. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 457–475. · Zbl 1150.11008
[11] M. Fried, On Hilbert’s irreducibility theorem , J. Number Theory 6 (1974), 211–231. · Zbl 0299.12002 · doi:10.1016/0022-314X(74)90015-8
[12] M. Fried and M. Jarden, Field arithmetic , Springer, Berlin, 2008.
[13] A. E. Ingham, The Distribution of Prime Numbers , Cambridge Univ. Press, Cambridge, 1932, reprinted 1992. · JFM 58.0193.02
[14] S. L. Kleiman, The transversality of a general translate , Compositio Math. 28 (1974), 287–297. · Zbl 0288.14014
[15] S. Lang, Elliptic curves, diophantine analysis , Springer, Berlin, 1978. · Zbl 0388.10001
[16] -, Number Theory , III: Diophantine Geometry , Enc. of Math. Sci. 60 , Springer, Berlin, 1991. · Zbl 0744.14012
[17] M. Raynaud, Courbes sur une variété abélienne et points de torsion , Invent. Math. 71 (1983), 207–233. · Zbl 0564.14020 · doi:10.1007/BF01393342
[18] A. Schinzel, On Hilbert’s irreducibility theorem , Ann. Polon. Math. 16 (1965), 333–340. · Zbl 0166.04802
[19] -, An analogue of Hilbert’s irreducibility theorem , Number Theory (Banff, AB, 1988), 509–514., de Gruyter, Berlin, 1990. · Zbl 0693.12003
[20] -, Polynomials with special regard to reducibility, Cambridge Univ. Press, Cambridge, 2000. · Zbl 0956.12001
[21] J.-P. Serre, Corps locaux , Hermann, Paris, 1968.
[22] -, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques , Invent. Math. 15 (1972), 259–331. · Zbl 0235.14012 · doi:10.1007/BF01405086
[23] -, Lectures on the Mordell-Weil Theorem , \(2\)nd ed., Vieweg, Braunschweig, 1989.
[24] -, Topics in Galois Theory, Jones and Bartlett, Boston, 1992. · Zbl 0746.12001
[25] -, On a theorem of Jordan , Bull. Amer. Math. Sec. (N.S.) 40 (2003), 429–440. · Zbl 1047.11045 · doi:10.1090/S0273-0979-03-00992-3
[26] J. Silverman, The Arithmetic of Elliptic Curves , Grad. Texts Math. 106 , Springer, New York, 1986. · Zbl 0585.14026
[27] U. Zannier, A proof of Pisot \(d\)th root conjecture , Ann. of Math. 2 (2000), 375–383. JSTOR: · Zbl 0995.11007 · doi:10.2307/121122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.