×

The regulated primitive integral. (English) Zbl 1207.26018

The author defines a new integral, the regulated primitive integral. A function on the real line is called regulated if it has a left limit and a right limit at each point. If \(f\) is a Schwartz distribution on the real line such that \(f=F'\) (distributional or weak derivative) for a regulated function F then the regulated primitive integral of \(f\) on an interval \([a,b]\) is \(\int _a ^b f= F(b-) - F (a+)\). Then the author shows that the space of integrable distributions is a Banach space and Banach lattice under the Alexiewicz norm, and this space contains the spaces of Lebesgue and Henstock-Kurzweil integrable functions. The author also proves that the space is the completion of the space of signed Radon measures in the Alexiewicz norm and the functions of bounded variation form the dual space and the space of multipliers. Moreover, the author proves some properties of this integral such as integration by parts, change of variables, Hölder’s inequality, Taylor’s theorem and a convergence theorem.

MSC:

26A39 Denjoy and Perron integrals, other special integrals
46G12 Measures and integration on abstract linear spaces
46E15 Banach spaces of continuous, differentiable or analytic functions
46F05 Topological linear spaces of test functions, distributions and ultradistributions

References:

[1] D. D. Ang, K. Schmitt and L. K. Vy, A multidimensional analogue of the Denjoy–Perron–Henstock–Kurzweil integral , Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 355–371. · Zbl 0929.26009
[2] K. K. Aye and P.-Y. Lee, The dual of the space of functions of bounded variation , Math. Bohem. 131 (2006), 1–9. · Zbl 1112.26008
[3] H. Bauer, Measure and integration theory , de Gruyter, Berlin, 2001.
[4] B. Bongiorno, L. Di Piazza and D. Preiss, A constructive minimal integral which includes Lebesgue integrable functions and derivatives , J. London Math. Soc. (2) 62 (2000), 117–126. · Zbl 0980.26006 · doi:10.1112/S0024610700008905
[5] V. G. Čelidze and A. G. Džvarše\?švili, The theory of the Denjoy integral and some applications , World Scientific, Singapore, 1989 (trans. P. S. Bullen).
[6] H. G. Dales et al., Introduction to Banach algebras, operators, and harmonic analysis , Cambridge Univ. Press, Cambridge, 2003. · Zbl 1041.46001
[7] N. Dunford and J. Schwartz, Linear operators, Part I , Interscience, New York, 1957. · Zbl 0128.34803
[8] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions , CRC Press, Boca Raton, 1992. · Zbl 0804.28001
[9] D. Fraňkova, Regulated functions , Math. Bohem. 116 (1991), 20–59. · Zbl 0724.26009
[10] F. G. Friedlander and M. Joshi, Introduction to the theory of distributions , Cambridge Univ. Press, Cambridge, 1999. · Zbl 0499.46020
[11] T. H. Hildebrandt, On bounded linear functional operations , Trans. Amer. Math. Soc. 36 (1934), 868–875. JSTOR: · Zbl 0010.30303 · doi:10.2307/1989829
[12] T. H. Hildebrandt, Linear operations on functions of bounded variation , Bull. Amer. Math. Soc. 44 (1938), 75. · Zbl 0018.13501
[13] T. H. Hildebrandt, Linear continuous functionals on the space \((BV)\) with weak topologies , Proc. Amer. Math. Soc. 17 (1966), 658–664. JSTOR: · Zbl 0152.13604 · doi:10.2307/2035386
[14] C. S. Hönig, Volterra Stieltjes-integral equations , North-Holland, Amsterdam, 1975.
[15] R. L. Jeffrey, The theory of functions of a real variable , Dover, New York, 1985. · Zbl 0043.27901
[16] H. S. Kaltenborn, Linear functional operations on functions having discontinuities of the first kind , Bull. Amer. Math. Soc. 40 (1934), 702–708. · Zbl 0010.16905 · doi:10.1090/S0002-9904-1934-05949-4
[17] R. Kannan and C. K. Krueger, Advanced analysis on the real line , Springer, New York, 1996. · Zbl 0855.26001
[18] J. J. Koliha, Mean, meaner, and the meanest mean value theorem , Amer. Math. Monthly 116 (2009), 356–361. · Zbl 1229.26009 · doi:10.4169/193009709X470227
[19] S. Mac Lane and G. Birkhoff, Algebra , Macmillan, New York, 1979.
[20] R. D. Mauldin, Some effects of set-theoretical assumptions in measure theory , Adv. Math. 27 (1978), 45–62. · Zbl 0393.28001 · doi:10.1016/0001-8708(78)90076-2
[21] R. M. McLeod, The generalized Riemann integral , The Mathematical Association of America, Washington, 1980. · Zbl 0486.26005
[22] P. Mikusińksi and K. Ostaszewski, Embedding Henstock integrable functions into the space of Schwartz distributions , Real Anal. Exchange 14 (1988-89), 24–29.
[23] W. Pfeffer, Derivation and integration , Cambridge Univ. Press, Cambridge, 2001. · Zbl 0980.26008
[24] C. K. Raju, Distributional matter tensors in relativity , Proceedings of the Fifth Marcel Grossmann Meeting on General Relativity, Part A (D. G. Blair and M. J. Buckingham, eds.), World Scientific, Singapore, 1989, pp. 419–422.
[25] S. Saks, Theory of the integral , Monografie Matematyczne, Warsaw, 1937 (trans. L. C. Young). · Zbl 0017.30004
[26] Š. Schwabik, On the relation between Young’s and Kurzweil’s concept of Stieltjes integral , Časopis Pěst. Mat. 98 (1973), 237–251. · Zbl 0266.26006
[27] Š. Schwabik, Linear operators in the space of regulated functions , Math. Bohem. 117 (1992), 79–92. · Zbl 0790.47023
[28] L. Schwartz, Thèorie des distributions , Hermann, Paris, 1966. · Zbl 0149.09501
[29] E. Talvila, Henstock–Kurzweil Fourier transforms , Illinois J. Math. 46 (2002), 1207–1226. · Zbl 1037.42007
[30] E. Talvila, The distributional Denjoy integral , Real Anal. Exchange 33 (2008), 51–82. · Zbl 1154.26011
[31] M. Tvrdý, Regulated functions and the Perron–Stieltjes integral , Časopis Pěst. Mat. 114 (1989), 187–209. · Zbl 0671.26006
[32] M. Tvrdý, Linear bounded functionals on the space of regular regulated functions , Tatra Mt. Math. Publ. 8 (1996), 203–210. · Zbl 0920.46031
[33] M. Tvrdý, Differential and integral equations in the space of regulated functions , Mem. Differential Equations Math. Phys. 25 (2002), 1–104. · Zbl 1081.34504
[34] V. S. Vladimirov, Methods of the theory of generalized functions , Taylor & Francis, London, 2002. · Zbl 1078.46029
[35] W. P. Ziemer, Weakly differentiable functions , Springer, New York, 1989. · Zbl 0692.46022 · doi:10.1007/978-1-4612-1015-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.